Molecular and Cellular Biochemistry

, Volume 254, Issue 1–2, pp 163–172

Partial prevention of changes in SR gene expression in congestive heart failure due to myocardial infarction by enalapril or losartan

  • Xiaobing Guo
  • Donald Chapman
  • Naranjan S. Dhalla


Although activation of the renin-angiotensin system (RAS) is known to produce ventricular remodeling and congestive heart failure (CHF), its role in inducing changes in the sarcoplasmic reticulum (SR) protein and gene expression in CHF is not fully understood. In this study, CHF was induced in rats by ligation of the left coronary artery for 3 weeks and then the animals were treated orally with or without an angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/day) or an angiotensin II receptor antagonist, losartan (20 mg/kg/day) for 4 weeks. Sham-operated animals were used as control. The animals were hemodynamically assessed and protein content as well as gene expression of SR Ca2+-release channel (ryanodine receptor, RYR), Ca2+-pump ATPase (SERCA2), phospholamban (PLB) and calsequestrin (CQS) were determined in the left ventricle (LV). The infarcted animals showed cardiac hypertrophy, lung congestion, depression in LV +dP/dt and −dP/dt, as well as increase in LV end diastolic pressure. Both protein content and mRNA levels for RYR, SERCA2 and PLB were decreased without any changes in CQS in the failing heart. These alterations in LV function as well as SR protein and gene expression in CHF were partially prevented by treatment with enalapril or losartan. The results suggest that partial improvement in LV function by enalapril and losartan treatments may be due to partial prevention of changes in SR protein and gene expression in CHF and that these effects may be due to blockade of the RAS.

congestive heart failure renin-angiotensin system sarcoplasmic reticulum proteins cardiac gene expression ACE inhibitors angiotensin II receptor antagonists 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP: Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85: 1599-1613, 1990Google Scholar
  2. 2.
    Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE: Calcium movements in relation to heart function. Basic Res Cardiol 77: 117-139, 1982Google Scholar
  3. 3.
    Dhalla NS, Wang X, Beamish RE: Intracellular calcium handling in normal and failing hearts. Exp Clin Cardiol 1: 7-20, 1996Google Scholar
  4. 4.
    Dhalla NS, Shao Q, Panagia V: Remodeling of cardiac membranes during the development of congestive heart failure. Heart Failure Rev 2: 261-272, 1998Google Scholar
  5. 5.
    Morgan JP, Erny RE, Allen PD, Grossman W, Gwathmey JK: Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81: III-21-III-32, 1990Google Scholar
  6. 6.
    Arai M, Matsui H, Periasamy M: Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74: 555-564, 1994Google Scholar
  7. 7.
    de la Bastie D, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompre AM: Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66: 554-564, 1990Google Scholar
  8. 8.
    Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E: Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92: 3220-3228, 1995Google Scholar
  9. 9.
    Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K: Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during endstage heart failure. J Clin Invest 85: 305-309, 1990Google Scholar
  10. 10.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G: Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92: 778-784, 1995Google Scholar
  11. 11.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H: Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75: 434-442, 1994Google Scholar
  12. 12.
    Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M: Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 9: 873-887, 1993Google Scholar
  13. 13.
    Litwin SE, Morgan JP: Captopril enhances intracellular calcium handling and beta-adrenergic responsiveness of myocardium from rats with postinfarction failure. Circ Res 71: 797-807, 1992Google Scholar
  14. 14.
    Afzal N, Dhalla NS: Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol Heart Circ Physiol 262: H868-H874, 1992Google Scholar
  15. 15.
    Afzal N, Dhalla NS: Sarcoplasmic reticular Ca2+ pump ATPase activity in congestive heart failure due to myocardial infarction. Can J Cardiol 12: 1065-1073, 1996Google Scholar
  16. 16.
    Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS: Decreased expression of cardiac sarcoplasmic reticulum Ca2+-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 163/164: 285-290, 1996Google Scholar
  17. 17.
    Iijima K, Geshi E, Nomizo A, Arata Y, Katagiri T: Alterations in sarcoplasmic reticulum and angiotensin II type 1 receptor gene expression after myocardial infarction in rats. Jpn Circ J 62: 449-454, 1998Google Scholar
  18. 18.
    Zhang XQ, Ng YC, Moore RL, Musch TI, Cheung JY: In situ SR function in postinfarction myocytes. J Appl Physiol 87: 2143-2150, 1999Google Scholar
  19. 19.
    Anand IS, Liu D, Chugh SS, Prahash AJ, Gupta S, John R, Popescu F, Chandrashekhar Y: Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 96: 3974-3984, 1997Google Scholar
  20. 20.
    Gupta S, Prahash AJ, Anand IS: Myocyte contractile function is intact in the post-infarct remodeled rat heart despite molecular alterations. Cardiovasc Res 48: 77-88, 2000Google Scholar
  21. 21.
    Yue P, Long CS, Austin R, Chang KC, Simpson PC, Massie BM: Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. J Mol Cell Cardiol 30: 1615-1630, 1998Google Scholar
  22. 22.
    Ambrose J, Pribnow DG, Giraud GD, Perkins KD, Muldoon L, Greenberg BH: Angiotensin type 1 receptor antagonism with irbesartan inhibits ventricular hypertrophy and improves diastolic function in the remodelling post-myocardial infarction ventricle. J Cardiovasc Pharmacol 33: 433-439, 1999Google Scholar
  23. 23.
    Omura T, Yoshiyama M, Takeuchi K, Hanatani A, Kim S, Yoshida K, Izumi Y, Iwao H, Yoshikawa J: Differences in time course of myocardial mRNA expression in non-infarcted myocardium after myocardial infarction. Basic Res Cardiol 95: 316-323, 2000Google Scholar
  24. 24.
    Yonekura K, Eto Y, Yokoyama I, Matsumoto A, Sugiura S, Momomura S, Kirimoto T, Hayashi Y, Omata M, Aoyagi T: Inhibition of carnitine synthesis modulates protein contents of the cardiac sarcoplasmic reticulum Ca2+-ATPase and hexokinase type I in rat hearts with myocardial infarction. Basic Res Cardiol 95: 343-348, 2000Google Scholar
  25. 25.
    Zhang LQ, Zhang XQ, Ng YC, Rothblum LI, Musch TI, Moore RL, Cheung JY: Sprint training normalizes Ca2+ transients and SR function in postinfarction rat myocytes. J Appl Physiol 89: 38-46, 2000Google Scholar
  26. 26.
    Ojamaa K, Kenessey A, Shenoy R, Klein I: Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab 279: E1319-E1324, 2000Google Scholar
  27. 27.
    Pennock GD, Spooner PH, Summers CE, Litwin SE: Prevention of abnormal sarcoplasmic reticulum calcium transport and protein expression in post-infarction heart failure using 3,5-diiodothyropropionic acid (DITPA). J Mol Cell Cardiol 32: 1939-1953, 2000Google Scholar
  28. 28.
    Yamaguchi F, Sanbe A, Takeo S: Effects of long-term treatment with trandolapril on sarcoplasmic reticulum function of cardiac muscle in rats with chronic heart failure following myocardial infarction. Br J Pharmacol 123: 326-334, 1998Google Scholar
  29. 29.
    Yoshiyama M, Takeuchi K, Hanatani A, Shimada T, Takemoto Y, Shimizu N, Omura T, Kim S, Iwao H, Yoshikawa J: Effect of cilazapril on ventricular remodeling assessed by Doppler-echocardiographic assessment and cardiac gene expression. Cardiovasc Drugs Ther 12: 57-70, 1998Google Scholar
  30. 30.
    Hanatani A, Yoshiyama M, Takeuchi K, Kim S, Nakayama K, Omura T, Iwao H, Yoshikawa J: Angiotensin II type 1-receptor antagonist candesartan cilexitil prevents left ventricular dysfunction in myocardial infarcted rats. Jpn J Pharmacol 78: 45-54, 1998Google Scholar
  31. 31.
    Pfeffer JM, Pfeffer MA, Braunwald E: Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure. Circulation 75: I149-I155, 1987Google Scholar
  32. 32.
    Shao Q, Ren B, Zarain-Herzberg A, Ganguly PK, Dhalla NS: Captopril treatment improves the sarcoplasmic reticular Ca2+ transport in heart failure due to myocardial infarction. J Mol Cell Cardiol 31: 1663-1672, 1999Google Scholar
  33. 33.
    Litwin SE, Morgan JP: Effects of stimulation frequency on calcium transients in noninfarcted myocardium: Modulation by chronic captopril treatment. J Card Fail 5: 224-235, 1999Google Scholar
  34. 34.
    Watanabe M, Kawaguchi H, Onozuka H, Mikami T, Urasawa K, Okamoto H, Watanabe S, Abe K, Kitabatake A: Chronic effects of enalapril and amlodipine on cardiac remodeling in cardiomyopathic hamster hearts. J Cardiovasc Pharmacol 32: 248-259, 1998Google Scholar
  35. 35.
    Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan Y, Iwao H: Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 103: 148-154, 2001Google Scholar
  36. 36.
    Khaper N, Singal PK: Modulation of oxidative stress by a selective inhibition of angiotensin II type 1 receptors in MI rats. J Am Coll Cardiol 37: 1461-1466, 2001Google Scholar
  37. 37.
    Dixon IM, Lee SL, Dhalla NS: Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66: 782-788, 1990Google Scholar
  38. 38.
    Wang J, Liu X, Ren B, Rupp H, Takeda N, Dhalla NS: Modification of myosin gene expression by imidapril in failing heart due to myocardial infarction. J Mol Cell Cardiol 34: 847-857, 2002Google Scholar
  39. 39.
    Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E: Myocardial infarct size and ventricular function in rats. Circ Res 44: 503-512, 1979Google Scholar
  40. 40.
    Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159, 1987Google Scholar
  41. 41.
    Wang J, Liu X, Sentex E, Takeda N, Dhalla NS: Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 2003 (in press)Google Scholar
  42. 42.
    Capasso JM, Li P, Anversa P: Cytosolic calcium transients in myocytes isolated from rats with ischemic heart failure. Am J Physiol Heart Circ Physiol 265: H1953-H1964, 1993Google Scholar
  43. 43.
    Sethi R, Elimban V, Chapman D, Dixon IM, Dhalla NS: Differential alterations in left and right ventricular G-proteins in congestive heart failure due to myocardial infarction. J Mol Cell Cardiol 30: 2153-2163, 1998Google Scholar
  44. 44.
    Li P, Park C, Micheletti R, Li B, Cheng W, Sonnenblick EH, Anversa P, Bianchi G: Myocyte performance during evolution of myocardial infarction in rats: Effects of propionyl-L-carnitine. Am J Physiol Heart Circ Physiol 268: H1702-H1713, 1995Google Scholar
  45. 45.
    Cheung JY, Musch TI, Misawa H, Semanchick A, Elensky M, Yelamarty RV, Moore RL: Impaired cardiac function in rats with healed myocardial infarction: Cellular vs. myocardial mechanisms. Am J Physiol Cell Physiol 266: C29-C36, 1994Google Scholar
  46. 46.
    Holt E, Tonnessen T, Lunde PK, Semb SO, Wasserstrom JA, Sejersted OM, Christensen G: Mechanisms of cardiomyocyte dysfunction in heart failure following myocardial infarction in rats. J Mol Cell Cardiol 30: 1581-1593, 1998Google Scholar
  47. 47.
    Brittsan AG, Carr AN, Schmidt AG, Kranias EG: Maximal inhibition of SERCA2 Ca2+ affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban. J Biol Chem 275: 12129-12135, 2000Google Scholar
  48. 48.
    Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97: 793-798, 2000Google Scholar
  49. 49.
    Anthonio RL, van Veldhuisen DJ, van Gilst WH: Left ventricular dilatation after myocardial infarction: ACE inhibitors, beta-blockers, or both? J Cardiovasc Pharmacol 32: S1-S8, 1998Google Scholar
  50. 50.
    Mulder P, Devaux B, Richard V, Henry JP, Wimart MC, Thibout E, Mace B, Thuillez C: Early versus delayed angiotensin-converting enzyme inhibition in experimental chronic heart failure. Effects on survival, hemodynamics, and cardiovascular remodeling. Circulation 95: 1314-1319, 1997Google Scholar
  51. 51.
    Jain P, Korlipara G, Mallavarapu C, Sikand V, Lillis O, Cohn PF: Effects of captopril therapy after late reperfusion on left ventricular remodeling after experimental myocardial infarction. Am Heart J 127: 756-763, 1994Google Scholar
  52. 52.
    Gohlke P, Linz W, Scholkens BA, Kuwer I, Bartenbach S, Schnell A, Unger T: Angiotensin-converting enzyme inhibition improves cardiac function. Role of bradykinin. Hypertension 23: 411-418, 1994Google Scholar
  53. 53.
    Serneri GG, Boddi M, Cecioni I, Vanni S, Coppo M, Papa ML, Bandinelli B, Bertolozzi I, Polidori G, Toscano T, Maccherini M, Modesti PA: Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res 88: 961-968, 2001Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Xiaobing Guo
    • 1
  • Donald Chapman
    • 1
  • Naranjan S. Dhalla
    • 1
  1. 1.Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations