Journal of Mammalian Evolution

, Volume 4, Issue 2, pp 77–86 | Cite as

Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics

  • Jack Sullivan
  • David L. Swofford
Article

Abstract

The monophyly of Rodentia has repeatedly been challenged based on several studies of molecular sequence data. Most recently, D'Erchia et al. (1996) analyzed complete mtDNA sequences of 16 mammals and concluded that rodents are not monophyletic. We have reanalyzed these data using maximum-likelihood methods. We use two methods to test for significance of differences among alternative topologies and show that (1) models that incorporate variation in evolutionary rates across sites fit the data dramatically better than models used in the original analyses, (2) the mtDNA data fail to refute rodent monophyly, and (3) the original interpretation of strong support for nonmonophyly results from systematic error associated with an oversimplified model of sequence evolution. These analyses illustrate the importance of incorporating recent theoretical advances into molecular phylogenetic analyses, especially when results of these analyses conflict with classical hypotheses of relationships.

inconsistency maximum likelihood molecular systematics rodents rate heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Adachi, J., and Hasegawa, M. (1996) MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, No. 28, Institute of Statistical Mathematics, Tokyo.Google Scholar
  2. Cao, Y., Adachi, J., Yano, T., and Hasegawa, M. (1994). Phylogenetic place of guinea pigs: No support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. Mol. Biol. Evol. 11: 593–604.Google Scholar
  3. Cao, Y., Okada, N., and Hasegawa, H. (1997). Phylogenetic position of guinea pigs revisited. Mol. Biol. Evol. 14: 461–464.Google Scholar
  4. D'Erchia, A. M., Gissi, C., Pesole, G., Saccone, C. and Arnason, U. (1996). The guinea-pig is not a rodent. Nature 381: 597–600.Google Scholar
  5. Felsenstein, J. (1978). Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.Google Scholar
  6. Gaut, B. S., and Lewis, P. O. (1995). Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol. 12: 152–162.Google Scholar
  7. Goldman, N. (1993). Statistical tests of models of DNA substitution. J. Mol. Evol. 36: 182–198.Google Scholar
  8. Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent? Nature 315: 649–652.Google Scholar
  9. Gu, X., Fu, Y.-X., and Li, W.-H. (1995). Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol. Biol. Evol. 12: 546–557.Google Scholar
  10. Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating the human-ape split by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160–174.Google Scholar
  11. Hasegawa, M., Cao, Y., and Adachi, J. (1992). Rodent polyphyly? Nature 255: 595.Google Scholar
  12. Hendy, M. D., and Penny, D. (1989). A framework for the quantitative study of evolutionary trees. Syst. Zool. 20: 406–416.Google Scholar
  13. Huelsenbeck, J. P. (1995). Performance of phylogenetic methods in simulation. Syst. Biol. 44: 17–48.Google Scholar
  14. Huelsenbeck, J. P., Hillis, D. M., and Jones, R. (1996). Parametric bootstrapping in molecular phylogenetics: Applications and performance. In: Molecular Zoology: Advances, Strategies, and Protocols, J. D. Ferraris and S. R. Palumbi, eds. pp. 19–45, Wiley-Liss, New York.Google Scholar
  15. Janke, A, Xu, X., and Arnason, U. (1996). The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupalia, and Eutheria. Proc. Natl. Acad. Sci. USA 94: 1276–1281.Google Scholar
  16. Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In: Mammalian Protein Metabolism, H. N. Munro, ed., pp. 21–132. Academic Press, New York.Google Scholar
  17. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.Google Scholar
  18. Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of Hominoidea. J. Mol. Evol. 29: 170–179.Google Scholar
  19. Li, W.-H., Hide, W. A., Zharkikh, A., Ma, D.-P., and Graur, D. (1992). The molecular taxonomy and evolution of the guinea pig. J. Hered. 83: 174–181.Google Scholar
  20. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations. J. Mammal. Evol. 2: 127–147.Google Scholar
  21. Ma, D.-P., Zharkikh, A., Graur, D., VandeBerg, J. L., and Li, W.-H. (1993) Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J. Mol. Evol. 36: 327–334.Google Scholar
  22. Maddison, W. P., and Maddison, D. R. (1992). MacClade—Analysis of Phylogeny and Character Evolution, Version 3.5, Sinauer, Sunderland.Google Scholar
  23. Martignetti, J. A., and Brosius, J. (1993). Neural BC1 RNA as an evolutionary marker: Guinea pig remains a rodent. Proc. Natl. Acad. Sci. USA 90: 9698–9702.Google Scholar
  24. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates: An Interdisciplinary Approach, W. P. Luckett and F. S. Szalay, eds. pp. 21–46, Plenum Press, New York.Google Scholar
  25. Nedbal, M. A., Honeycutt, R. L., and Schlitter, D. A. (1996). Higher-level systematics of rodents (Mammalia, Rodentia): Evidence from the mitochondrial 12S rRNA gene. J. Mammal. Evol. 3: 201–237.Google Scholar
  26. Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. In: Current Mammalogy, H. H. Genoways, ed., pp. 507–543, Plenum Press, New York.Google Scholar
  27. Porter, C. A., Goodman, M., and Stanhope, M. J. (1996). Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol. Phyl. Evol. 5: 89–101.Google Scholar
  28. Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., and Goodman, M. (1992). A molecular perspective on mammalian evolution from the gene encoding interophotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol. Phyl. Evol. 1: 148–160.Google Scholar
  29. Sullivan, J., Holsinger, K. E., and Simon, C. (1995). Among-site rate variation and phylogenetic analysis of 12S rRNA data in sigmodontine rodents. Mol. Biol. Evol. 12: 988–1001.Google Scholar
  30. Swofford, D. L., Olsen, G. P., Waddell, P. J., and Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, 2nd ed., D. M. Hillis, C. Moritz, and B. K. Mable, eds., pp. 407–514, Sinauer, Sunderland, MA.Google Scholar
  31. Waddell, P. (1995). Statistical Methods of Phylogenetic Analysis, Including Hadamard Conjugations, LogDet Transforms, and Maximum Likelihood, Ph.D. dissertation, Massey University, Palmerston North, New Zealand.Google Scholar
  32. Waddell, P. J., and Penny, D. (1996). Evolutionary trees of apes and humans from DNA sequences. In: Handbook of Symbolic Evolution, A. J. Lock and C. R. Peters, eds., pp. 53–73, Clarendon Press, Oxford.Google Scholar
  33. Yang, Z. (1994a). Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39: 105–111.Google Scholar
  34. Yang, Z. (1994b). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39: 306–314.Google Scholar
  35. Yang, Z. (1996). Phylogenetic analysis using parsimony and likelihood methods. J. Mol. Evol. 42: 294–307.Google Scholar
  36. Yang, Z., Goldman, N., and Friday, A. E. (1994). Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol. Biol. Evol. 11: 316–324.Google Scholar
  37. Yang, Z., Goldman, N., and Friday, A. E. (1995). Maximum likelihood trees from DNA sequences: A peculiar statistical estimation problem. Syst. Biol. 44: 384–399.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jack Sullivan
    • 1
    • 1
  • David L. Swofford
    • 1
  1. 1.Laboratory of Molecular Systematics, MSCSmithsonian Institution, MRC-534

Personalised recommendations