Neurochemical Research

, Volume 22, Issue 6, pp 713–719

Age-Dependent Organotypic Expression of Microtubule-Associated Proteins (MAP1, MAP2, and MAP5) in Rat Brain

  • Neelima Chauhan
  • George Siegel
Article

Abstract

Age-dependent changes in the distribution of microtubule-associated proteins (MAPs) were analyzed in young (3-months, N = 3) and old (24-months, N = 3) rat brain. In the young rats, MAP1 and MAP5 exhibited prominent immunostaining in the perikarya and dendrites whereas MAP2 was selectively localized in the dendrites. In the cerebellum, MAP2 was preferentially localized in finer and distal branches of Purkinje cell dendrites and in punctate deposits surrounding glomeruli. In general, aging resulted in obvious declines in MAP2- >> MAP1- and MAP5-immunoreactivities in the hippocampus and parietal cortex but no change in cerebellum. The results indicate that: (1) hippocampus is the most affected and cerebellum is the least affected region with regard to declines in MAPs-immunoreactivities in the aged rat brain; (2) dendrite-specific MAP2 is almost completely depleted from most dendrites in the hippocampus and cortex. In summary, loss of MAP2-immunoreactivity in the affected brain areas may be associated with age-related impairment of synaptic plasticity, cognition and memory functions.

Aging synaptic plasticity MAPs parietal cortex hippocampus cerebellum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Finch, C. E. 1993. Neuron atrophy during aging: programmed or sporadic? Trends Neurosci. 16:104–110.Google Scholar
  2. 2.
    Hasegawa, M., Arai, T., and Ihara, Y. 1990. Immunochemical evidence that fragments of phosphorylated MAP5 (MAP1B) are bound to neurofibrillary tangles in Alzheimer's disease. Neuron 4(6):909–918.Google Scholar
  3. 3.
    Geddes, J. W., Lundgren, K., and Kim, Y. K. 1991. Aberrant localization of MAP5 immunoreactivity in the hippocampal formation in Alzheimer's disease. J. Neurosci. Res. 30:183–191.Google Scholar
  4. 4.
    Olmsted, J. B. 1986. Microtubule associated proteins. Ann. Rev. Cell. Biol. 2:421–457.Google Scholar
  5. 5.
    Matus, A. 1988. Microtubule associated proteins: their potential role in determining neuronal morphology. Ann. Rev. Neurosci. 11: 29–44.Google Scholar
  6. 6.
    Binder, L. I., Frankfurter, A., and Rebhun, L. I. 1986. Differential localization of MAP2 and tau in mammalian neurons in situ. Ann. N.Y. Acad. Sci. 466:145–166.Google Scholar
  7. 7.
    Caceres, A., Busciglio, J., Ferreira, A., and Steward, O. 1988. An immunocytochemical and biochemical study of the microtubule-associated protein MAP-2 during post-lesion dendritic remodeling in the central nervous system of adult rats. Mol. Brain Res. 3: 233–246.Google Scholar
  8. 8.
    Arnold, S. E., and Trojanowski, J. Q. 1996. Human fetal hippocampal development. 2. The neuronal cytoskeleton. J. Comp. Neurol. 367(2):293–307.Google Scholar
  9. 9.
    Kubanis, P., and Zornetzer, S. F. 1981. Age-related behavioural and neurobiological changes: A review with an emphasis on memory. Behav. Neural. Biol. 31:15–21.Google Scholar
  10. 10.
    Araki, T., Kato, H., Kanai, Y., and Kogure, K. 1994. Age-dependent changes in the second messenger and rolipram receptor systems in the gerbil brain. J. Neural Trans. 97:135–147.Google Scholar
  11. 11.
    Pagluisi, S. R., Gerrard, P., Abdallah, M., Talabot, D., and Catsicas, S. 1994. Age-related changes in expression of AMPA-selective glutamate receptor subunits: Is calcium permeability altered in hippocampal neurons? Neuroscience. 61:429–433.Google Scholar
  12. 12.
    Roth, G. S., Joseph, J. A., and Preston, M. R. 1995. Membrane alterations as causes of impaired signal transduction in Alzheimer's disease and aging. Trends Neurosci. 18:203–206.Google Scholar
  13. 13.
    Nicoletti, V. G., Condorelli, D. F., Dell'Albani, P., Ragusa, N., and Giuffrida Stella, A. M. 1995. AMPA-selective glutamate receptor subunits in the rat hippocampus during aging. J. Neurosci. Res. 40:220–224.Google Scholar
  14. 14.
    Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.Google Scholar
  15. 15.
    Chauhan, N. B., and Siegel, G. J. 1996. In situ analysis of Na,K-ATPase α-isoform mRNAs in aging rat hippocampus. J. Neurochem. 66(4):1742–1751.Google Scholar
  16. 16.
    Chauhan, N. B., and Siegel, G. J. 1997. Differential expression of Na,K-ATPase α-isoform mRNAs in aging rat cerebellum. Journal of Neuroscience Research. 47:287–299.Google Scholar
  17. 17.
    Chauhan, N. B., and Siegel, G. J. 1997. Na,K-ATPase: Increases in α1-mRNA and decreases in α3-mRNA levels in aging rat cerebral cortex. In press, Neuroscience.Google Scholar
  18. 18.
    Sternberger, L. A. 1979. Immunocytochemistry, 2nd edition, Wiley, New York.Google Scholar
  19. 19.
    Masliah, E., Mallory, M., Ge, N., Alford, M., Veinbergs, I., and Roses, A. D. 1995. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp. Neurol. 136(2):107–122.Google Scholar
  20. 20.
    Gazzaley, A. H., Siegel, S. J., Kordower, J. H., Mufson, E. J., and Morrison, J. H. 1996. Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys. Proc. Natl. Acad Sci., USA. 93(7):3121–3125.Google Scholar
  21. 21.
    Matus, A., and Green, G. D. J. 1987. Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins. Biochemistry. 26:8083–8086.Google Scholar
  22. 22.
    Leterrier, J. F., and Eyer, J. 1992. Age-dependent changes in the ultrastructure and in the molecular composition of rat brain microtubules. J. Neurochem. 59(3):1126–1137.Google Scholar
  23. 23.
    Neuman, K., Soosaar, A., Nornes, H. O., and Neuman, T. 1995. Orphan receptor COUP-TF I antagonizes retinoic-acid induced neuronal differentiation. J. Neurosci. Res. 41(1):39–48.Google Scholar
  24. 24.
    Tsui, C. C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Barnes, C., and Worley, P. F. 1996. NARP, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J. Neurosci. 16(3): 2463–2478.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Neelima Chauhan
    • 1
    • 2
    • 3
  • George Siegel
    • 1
    • 2
  1. 1.Molecular and Cellular Neuroscience Laboratory, Neurology ServiceEdward Hines Jr. Veterans Affairs HospitalHines
  2. 2.Department of NeurologyLoyola University, Chicago, Stritch School of MedicineMaywood
  3. 3.Department of Molecular and Cellular BiochemistryLoyola University Chicago, Stritch School of MedicineMaywood

Personalised recommendations