Advertisement

General Relativity and Gravitation

, Volume 35, Issue 12, pp 2171–2187 | Cite as

Dark Energy and Global Rotation of the Universe

  • Włodzimierz Godłowski
  • Marek Szydłowski
Article

Abstract

We discuss the problem of universe acceleration driven by global rotation. The redshift-magnitude relation is calculated and discussed in the context of SN Ia observation data. It is shown that the dynamics of considered problem is equivalent to the Friedmann model with additional non-interacting fluid with negative pressure. We demonstrate that the universe acceleration increase is due to the presence of global rotation effects, although the cosmological constant is still required to explain the SN Ia data. We discuss some observational constraints coming from SN Ia imposed on the behaviour of the homogeneous Newtonian universe in which matter rotates relative local gyroscopes. In the Newtonian theory Ωr,0 can be identified with Ωω,0 (only dust fluid is admissible) and rotation can exist with Ωr,0 =Ωω,0 ≤ 0. However, the best-fit flat model is the model without rotation, i.e., Ωω,0 =0. In the considered case we obtain the limit for Ωω,0>-0.033 on the confidence level 68.3. We are also beyond the model and postulate the existence of additional matter which scales like radiation matter and then analyse how that model fits the SN Ia data. In this case the limits on rotation coming from BBN and CMB anisotropies are also obtained. If we assume that the current estimates are Ωm,0 ~ 0.3, Ωr,0 ~ 10-4, then the SN Ia data show that Ωω,0 ≥ -0.01 (or ω0 > 2.6 · 10-19 rad/s). The statistical analysis gives us that the interval for any matter scaling like radiation is Ωr,0 ∈ ( - 0.01, 0.04).

Cosmology rotation dark matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Szekeres, P. and Rankin, R. (1977). Aust. Math. Soc. B 20, 114.Google Scholar
  2. [2]
    Senovilla, J. M. M., Sopuerta, C. F., and Szekeres, P. (1998). Gen. Rel. Grav. 30, 389.Google Scholar
  3. [3]
    Godlowski, W., Szydlowski, M., Flin, P., and Biernacka, M. (2003). Gen. Rel. Grav. 35, 907.Google Scholar
  4. [4]
    King, A. R. and Ellis, G. F. R. (1973). Commun. Math. Phys. 31, 209.Google Scholar
  5. [5]
    Raychaudhuri, A. K. (1979). Theoretical Cosmology, Clarendon Press, Oxford.Google Scholar
  6. [6]
    Hawking, S. W. (1969). Mon. Not. R. Astron. Soc. 142, 129.Google Scholar
  7. [7]
    Ellis, G. F. R. (1973). In Cargèse Lectures in Physics, Vol. 6, E. Schatzman (Ed.), Gordon and Breach, New York.Google Scholar
  8. [8]
    Li, L.-X. (1998). Gen. Rel. Grav. 30, 497.Google Scholar
  9. [9]
    Collins, C. B. and Hawking, S. W. (1973). Mon. Not. R. Astron. Soc. 162, 307.Google Scholar
  10. [10]
    Hawking, S. W. (1974). In Confrontation of Cosmological Theories with Observational Data, M. S. Longair (Ed.), Reidel, Dordrecht, p. 283.Google Scholar
  11. [11]
    Kristian, J. and Sachs, R. K. (1966). Astrophys. J. 143, 379.Google Scholar
  12. [12]
    Ciufolini, I. and Wheeler, J. A. (1995). Gravitation and Inertia, Princeton University Press, Princeton, New Jersey.Google Scholar
  13. [13]
    Heckmann, O. and Schücking, E. (1959). In Handbuch der Physik, Vol. LIII, S. Flügge (Ed.), Springer-Verlag, Berlin, p. 489.Google Scholar
  14. [14]
    Perlmutter, S., et al. (1999). Astrophys. J. 517, 565.Google Scholar
  15. [15]
    Riess, A. G., et al. (1998). Astron. J. 116, 1009.Google Scholar
  16. [16]
    Weinberg, S. (1972). Gravitation and Cosmology, Wiley, New York.Google Scholar
  17. [17]
    Efstathiou, G., Bridle, S. L., Lasenby, A. N., Hobson, M. P., and Ellis, R. S. (1999). Mon. Not. Roy. Astron. Soc. 303, L47.Google Scholar
  18. [18]
    Vishwakarma, R. G. (2001). Gen. Rel. Grav. 33, 1973.Google Scholar
  19. [19]
    Peebles, P. J. E. and Ratra, B. (2002). (astro-ph/0207347).Google Scholar
  20. [20]
    Lahav, O. (2002). (astro-ph/0208297).Google Scholar
  21. [21]
    Vishwakarma, R. G. and Singh, P. (2002). (astro-ph/0211285).Google Scholar
  22. [22]
    Ichiki, K., Yahiro, M., Kajino, T., Orito, M., and Mathews, G. J. (2002). (astro-ph/0203272).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Włodzimierz Godłowski
    • 1
  • Marek Szydłowski
    • 1
  1. 1.Astronomical ObservatoryJagiellonian UniversityKrakowPoland

Personalised recommendations