Journal of Mammalian Evolution

, Volume 4, Issue 1, pp 1–18 | Cite as

Tooth Replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia)

  • Thomas Martin


The discovery of juvenile dentitions of late Jurassic (Kimmeridgian) Dryolestidae (Eupantotheria, Mammalia) from Guimarota, Portugal, yields for the first time information on the mode of tooth replacement in therian mammals prior to the dichotomy of placentals and marsupials. As in extant placentals, tooth replacement occurs at all antemolar positions [incisors (I1–I4), canine (C), premolars (P1–P4)]. P1 and P2 have premolariform milk predecessors, whereas the large premolariform third (P3) and fourth premolars (P4) are preceded by molariform deciduous premolars (dP3, dP4). Tooth replacement takes place in two waves, at least in the lower jaw, with I2, I4, P1, and P3 in the first series and I1, I3, C, P2, and P4 in the second. P4 is the last premolar to erupt, and it is present when the sixth molar (M6) starts to break through. The reduced tooth replacement pattern of marsupials (with only dP3 being replaced postnatally) evolved secondarily from the primitive or plesiomorphic mammalian condition, which was retained in Dryolestidae and Eutheria.

Dryolestidae Eupantotheria Jurassic deciduous teeth tooth replacement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonaparte, J. F. (1986). Sobre Mesungulatum houssayi y nuevos mammíferos Cretacicos de Patagonia, Argentina. Actas IV Congr. Argent. Paleont. Bioestratigr. 2: 48–61 (Mendoza).Google Scholar
  2. Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, Northern Patagonia. Natl. Geogr. Res. 6: 63–93.Google Scholar
  3. Bonaparte, J. F. (1994). Approach to the significance of the Late Cretaceous mammals of South America. Berliner Geowiss. Abh. E13: 31–44.Google Scholar
  4. Butler, P. M. (1939). The teeth of the Jurassic mammals. Proc. Zool. Soc. London 109B: 329–356.Google Scholar
  5. Butler, P. M. (1978). The ontogeny of mammalian heterodonty. J. Biol. Buccale 6: 217–227.Google Scholar
  6. Butler, P. M., and Krebs, B. (1973). A pantotherian milk dentition. Paläont. Z. 47: 256–258.Google Scholar
  7. Cifelli, R. L., Rowe, T. B., Luckett, W. P., Banta, J., Reuben, R., and Howes, R. I. (1996). Fossil evidence for the origin of the marsupial pattern of tooth replacement. Nature 379: 715–718.Google Scholar
  8. Clemens, W. A. (1973). Fossil mammals of the type Lance Formation Wyoming. Part III. Eutheria and summary. Univ. Calif. Publ. Geol. Sci. 94: 1–102.Google Scholar
  9. Flower, W. H. (1867). On the development and succession of the teeth in the Marsupialia. Phil. Trans. Roy. Soc. London B157: 631–641.Google Scholar
  10. Fox, R. C. (1979). Mammals from the Upper Cretaceous Oldman Formation, Alberta. III. Eutheria. Can. J. Earth Sci. 16: 114–125.Google Scholar
  11. Fox, R. C. (1983). New evidence on the relationships of the Tertiary insectivoran Ankylodon (Mammalia). Can. J. Earth Sci. 20: 968–977.Google Scholar
  12. Freeman, E. F. (1976). Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194: 1053–1055.Google Scholar
  13. Greenwald, N. S. (1988). Patterns of tooth eruption and replacement in multituberculate mammals. J. Vert. Paleont. 8: 265–277.Google Scholar
  14. Hahn, G. (1969). Beiträge zur Fauna der Grube Guimarota Nr. 3. Die Multituberculata. Palaeontographica A133: 1–100.Google Scholar
  15. Hahn, G. (1978). Milch-Bezahnungen von Paulchoffatiidae (Multituberculata; Ober-Jura). N. Jb. Geol. Paläont. Mh. 1978: 25–34.Google Scholar
  16. Helmdach, F.-F. (1971a). Stratigraphy and ostracod-fauna from the coalmine Guimarota (Upper Jurassic). Contribuiçao para o Conhecimento da Fauna do Kimeridgiano da Mina de Lignito Guimarota (Leiria, Portugal) II Parte, IV. Mem. Serv. Geol. Portugal Nova Sér. 17: 41–88.Google Scholar
  17. Helmdach, F.-F. (1971b). Zur Gliederung limnisch-brackischer Sedimente des portugiesischen Oberjura (Ob. Callovien bis Kimmeridge) mit Hilfe von Ostracoden. N. Jb. Geol. Paläont. Mh. 1971: 645–662.Google Scholar
  18. Henkel, S., and Krebs, B. (1969). Zwei Säugetier-Unterkiefer aus der Unteren Kreide von Uña (Prov. Cuenca, Spanien). N. Jb. Geol. Paläont. Mh. 1969: 449–463.Google Scholar
  19. Kielan-Jaworowska, Z. (1975). Possible occurrence of marsupial bones in Cretaceous eutherian mammals. Nature 255: 698–699.Google Scholar
  20. Kielan-Jaworowska, Z. (1981). Evolution of the therian mammals in the late Cretaceous of Asia. Part IV. Skull structure in Kennalestes and Asioryctes. Palaeont. Polonica 42: 25–78.Google Scholar
  21. Kielan-Jaworowska, Z., and Dashzeveg, D. (1989). Eutherian mammals from the early Cretaceous of Mongolia. Zool. Scripta 18: 347–355.Google Scholar
  22. Kindahl, M. (1967). Some comparative aspects of the reduction of the premolars in the Insectivora. J. Dent. Res. 46: 805–808.Google Scholar
  23. Krebs, B. (1988). Mesozoische Säugetiere—Ergebnisse von Ausgrabungen in Portugal. Sitzungsber. Ges. Naturforsch. Freunde Berlin (n.F.) 28: 95–107.Google Scholar
  24. Krebs, B. (1991). Das Skelett von Henkelotherium guimarotae gen. et sp. nov. aus dem Oberen Jura von Portugal. Berliner Geowiss. Abh. A133: 1–110.Google Scholar
  25. Krebs, B. (1993). Das Gebiß von Crusafontia (Eupantotheria, Mammalia)—Funde aus der Unter-Kreide von Galve und Uña (Spanien). Berliner Geowiss. Abh. E9: 233–252.Google Scholar
  26. Krusat, G. (1980). Haldanodon exspectatus KÜHNE & KRUSAT 1972 (Mammalia, Docodonta). Contribuiçao para o Conhecimento da Fauna do Kimeridgiano da Mina de Lignito Guimarota (Leiria, Portugal) IV Parte; VIII. Mem. Serv. Geol. Portugal 27: 1–79.Google Scholar
  27. Krusat, G. (1991). Functional morphology of Haldanodon exspectatus (Mammalia, Docodonta) from the Upper Jurassic of Portugal. Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Oslo 1991, extended abstracts. Contr. Paleont. Mus. Univ. Oslo 364: 37–38.Google Scholar
  28. Kühne, W. G. (1961). A mammalian fauna from the Kimmeridgian of Portugal. Nature 192: 274–275.Google Scholar
  29. Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ. Kans. Paleont. Contr. 50: 1–122.Google Scholar
  30. Lillegraven, J. A., and McKenna, M. C. (1986). Fossil mammals from the “Mesaverde” Formation (Late Cretaceous, Judithian) of the Bighorn and Wind River basins, Wyoming, with definitions of Late Cretaceous North American land-mammal “ages.” Am. Mus. Novit. 2840: 1–68.Google Scholar
  31. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In: Mammal Phylogeny. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 182–204, Springer, Berlin, New York, Heidelberg.Google Scholar
  32. Luckett, W. P., and Maier, W. (1982). Development of deciduous and permanent dentition in Tarsius and its phylogenetic significance. Folia Primatol. 37: 1–36.Google Scholar
  33. Martin, T. (1995). Dryolestidae from the Kimmeridge of the Guimarota coal mine (Portugal) and their implications for dryolestid systematics and phylogeny. In: Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota—Short Papers, A. Sun, and Y. Wang, eds., pp. 229–231, China Ocean Press, Beijing.Google Scholar
  34. Marsh, O. C. (1878). Fossil mammal from the Jurassic of the Rocky Mountains. Am. J. Sci. 3,XV: 459.Google Scholar
  35. Marsh, O. C. (1879). Notice of new Jurassic mammals. Am. J. Sci. 3,XVIII: 396–398.Google Scholar
  36. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett, and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  37. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183: 1–112.Google Scholar
  38. Osborn, J. W., and Crompton, A. W. (1973). The evolution of mammalian from reptilian dentitions. Brev. Mus. Comp. Zool. 399: 1–18.Google Scholar
  39. Parrington, F. R. (1936). On the tooth-replacement in theriodont reptiles. Phil. Trans. Roy. Soc. London B226: 121–142.Google Scholar
  40. Parrington, F. R. (1971). On the upper Triassic mammals. Phil. Trans. Roy. Soc. London B261: 231–272.Google Scholar
  41. Prothero, D. R. (1981). New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull. Am. Mus. Nat. Hist. 167: 277–326.Google Scholar
  42. Schudack, M. (1993). Charophyten aus dem Kimmeridgium der Kohlengrube Guimarota (Portugal). Mit einer eingehenden Diskussion zur Datierung der Fundstelle. Berliner Geowiss. Abh. E9: 211–231.Google Scholar
  43. Sigogneau-Russell, D., Dashzeveg, D., and Russell, D. E. (1992). Further data on Prokennalestes (Mammalia, Eutheria inc. sed.) from the Early Cretaceous of Mongolia. Zool. Scripta 21: 205–209.Google Scholar
  44. Simpson, G. G. (1928). A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum, British Museum [Natural History], London.Google Scholar
  45. Simpson, G. G. (1929). American Mesozoic Mammalia. Mem. Peabody Mus. Yale Univ. 3: 1–235.Google Scholar
  46. Szalay, F. S. (1965). First evidence of tooth replacement in the subclass Allotheria (Mammalia). Am. Mus. Novit. 2226: 1–12.Google Scholar
  47. Ziegler, A. C. (1971). A theory of the evolution of therian dental formulas and replacement patterns. Q. Rev. Biol. 46: 226–249.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Thomas Martin
    • 1
  1. 1.Institut für PaläontologieFreie Universität BerlinBerlinGermany

Personalised recommendations