Topics in Catalysis

, Volume 11, Issue 1–4, pp 147–152 | Cite as

Partial oxidation reactions on phosphate-based catalysts

  • Jacques C. Védrine
Article

Abstract

In this work emphasis has been placed on phosphate-based catalysts used for partial oxidation reactions, such as vanadyl pyrophosphate, iron phosphates and hydrogen/hydroxy-phosphates, zirconium hydrogen phosphates as layered compounds used to stabilise/entrap Cr and V oxyhydroxy-macrocations. It is shown that, in partial oxidation reactions, the catalyst surface behave in a rather dynamic and labile way, reconstructing under activation and/or catalytic reaction conditions and adapting itself to the stereochemistry of the reactants. The active sites are shown to have a molecular size, to be isolated and to present several catalytic functions, as hydrocarbon activation, H atom abstraction, lattice oxygen incorporation and electron transfer through the solid material to allow the redox process to occur. The metal cations are the active species and the role of the phosphate tetrahedra is not only to bind the MO6 octahedra together to constitute a dense or layered compound but also to bring some specific redox and acid–base properties.

partial oxidation reactions butane to maleic anhydride isobutyric acid to methacrylic acid ethane to ethene VPO catalyst FePO catalyst V2O5 and Cr2O3 supported on zirconium phosphates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Centi, Catal. Today 16(1) (1993).Google Scholar
  2. [2]
    J. Johnson, D. Johnson, A. Jacobson and J. Brady, J. Am. Chem. Soc. 106 (1984) 8123.CrossRefGoogle Scholar
  3. [3]
    E. Bordes, Catal. Today 1 (1987) 499.CrossRefGoogle Scholar
  4. [4]
    B. Hodnett, Catal. Today 1 (1987) 527.CrossRefGoogle Scholar
  5. [5]
    G. Centi, F. Trifirò, J. Ebner and V. Franchetti, Chem. Rev. 88 (1988) 55.CrossRefGoogle Scholar
  6. [6]
    N. Harrouch Batis, H. Batis, A. Ghorbel, J.C. Védrine and J.-C. Volta, J. Catal. 128 (1991) 248.CrossRefGoogle Scholar
  7. [7]
    E. Lombardo, C. Sánchez and L. Cornaglia, Catal. Today 15 (1992) 407.CrossRefGoogle Scholar
  8. [8]
    F. Trifirò and F. Cavani, CHEMTECH (1994) 18.Google Scholar
  9. [9]
    Z. Ziolkowski, J. Catal. 100 (1986) 45.CrossRefGoogle Scholar
  10. [10]
    E. Bordes, Stud. Surf. Sci. Catal. 67 (1991) 21.Google Scholar
  11. [11]
    M.T. Sananes, A. Tuel and J.-C. Volta, J. Catal. 145 (1994) 251.CrossRefGoogle Scholar
  12. [12]
    G.J. Hutchings, A. Desmartin-Chomel, R. Ollier and J.-C. Volta, Nature 368 (1994) 41.CrossRefGoogle Scholar
  13. [13]
    Y. Zhang Lin, M. Forissier, R.P.A. Sneeden, J.C. Védrine and J.-C. Volta, J. Catal. 145 (1994) 256.CrossRefGoogle Scholar
  14. [14]
    P.A. Agashar, L. de Caul and R.K. Grasselli, Catal. Lett. 23 (1994) 339.CrossRefGoogle Scholar
  15. [15]
    K.E. Bere, M. Gravelle and M. Abon, J. Chim. Phys. 92 (1995) 1521.Google Scholar
  16. [16]
    G.J. Hutchings, Appl. Catal. 72 (1991) 1.CrossRefGoogle Scholar
  17. [17]
    M.T. Sananès, J.O. Petunchi and E.A. Lombardo, Catal. Today 15 (1992) 527.CrossRefGoogle Scholar
  18. [18]
    F. Ben Abdelouabab, R. Olier, M. Ziyad and J.C. Volta, J. Catal. 157 (1995) 687.CrossRefGoogle Scholar
  19. [19]
    G.J. Hutchings and R. Higgins, J. Catal. 162 (1996) 153.CrossRefGoogle Scholar
  20. [20]
    L.M. Cornaglia, C.R. Carrara, J.O. Petunchi and E.A. Lombardo, Appl. Catal. A 183 (1999) 177.CrossRefGoogle Scholar
  21. [21]
    P.L. Gai, Topics Catal. 8 (1999) 97.CrossRefGoogle Scholar
  22. [22]
    J.C. Védrine, J.-M.M. Millet and J.C. Volta, Catal. Today 32 (1996) 115.CrossRefGoogle Scholar
  23. [23]
    J.C. Védrine, G. Coudurier and J.-M.M. Millet, Catal. Today 33 (1997) 3.CrossRefGoogle Scholar
  24. [24]
    J.C. Védrine, Stud. Surf. Sci. Catal. 110 (1997) 61.Google Scholar
  25. [25]
    J.-M.M. Millet, J.C. Védrine and G. Hecquet, Stud. Surf. Sci. Catal. 55 (1990) 833.CrossRefGoogle Scholar
  26. [26]
    C. Virely, M. Forissier, J.-M.M. Millet and J.C. Védrine, J. Mol. Catal. 71 (1992) 199.CrossRefGoogle Scholar
  27. [27]
    D. Rouzies, J.-M.M. Millet, D. Siew Hew Sam and J.V. Védrine, Appl. Catal. A 124 (1995) 189.CrossRefGoogle Scholar
  28. [28]
    J.-M.M. Millet, M. Forissier, D. Rouzies, P. Bonnet and J.C. Védrine, Stud. Surf. Sci. Catal. 101 (1996) 1011.Google Scholar
  29. [29]
    V. Robert, S.A. Borshch and B. Bigot, Chem. Phys. Lett. 236 (1995) 491.CrossRefGoogle Scholar
  30. [30]
    V. Robert, S.A. Borshch and B. Bigot, J. Phys. Chem. 100 (1996) 580.CrossRefGoogle Scholar
  31. [31]
    J.C. Védrine, J.-M.M. Millet and S.A. Borshch, Il Nuovo Cimento 19 (1997) 1759.CrossRefGoogle Scholar
  32. [32]
    P. Bonnet, J.-M.M. Millet, J.C. Védrine and G. Hecquet, Stud. Surf. Sci. Catal. 82 (1994) 892.Google Scholar
  33. [33]
    M. Loukah, G. Coudurier, J.C. Védrine and M. Ziyad, Micropor. Mater. 4 (1995) 345.CrossRefGoogle Scholar
  34. [34]
    M. Loukah, G. Coudurier and J.C. Védrine, Stud. Surf. Sci. Catal. 72 (1992) 191.Google Scholar
  35. [35]
    G.C. Bond, J. Perez Zurita, S. Flamerz, P.J. Gellings, H. Bosch, J.G. van Ommen and B.J. Kip, Appl. Catal. 22 (1986) 361.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jacques C. Védrine
    • 1
  1. 1.Leverhulme Centre for Innovative Catalysis, Department of ChemistryThe University of LiverpoolLiverpool L69 7ZDUK

Personalised recommendations