Topics in Catalysis

, Volume 11, Issue 1–4, pp 85–100

In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation

  • Loyd J. Burcham
  • Goutam Deo
  • Xingtao Gao
  • Israel E. Wachs
Article

Abstract

The application of in situ Raman, IR, and UV-Vis DRS spectroscopies during steady-state methanol oxidation has demonstrated that the molecular structures of surface vanadium oxide species supported on metal oxides are very sensitive to the coordination and H-bonding effects of adsorbed methoxy surface species. Specifically, a decrease in the intensity of spectral bands associated with the fully oxidized surface (V5+) vanadia active phase occurred in all three studied spectroscopies during methanol oxidation. The terminal V = O (∼1030 cm−1) and bridging V–O–V (∼900–940 cm−1) vibrational bands also shifted toward lower frequency, while the in situ UV-Vis DRS spectra exhibited shifts in the surface V5+ LMCT band (>25,000 cm−1) to higher edge energies. The magnitude of these distortions correlates with the concentration of adsorbed methoxy intermediates and is most severe at lower temperatures and higher methanol partial pressures, where the surface methoxy concentrations are greatest. Conversely, spectral changes caused by actual reductions in surface vanadia (V5+) species to reduced phases (V3+/V4+) would have been more severe at higher temperatures. Moreover, the catalyst (vanadia/silica) exhibiting the greatest shift in UV-Vis DRS edge energy did not exhibit any bands from reduced V3+/V4+ phases in the d–d transition region (10,000–30,000 cm−1), even though d–d transitions were detected in vanadia/alumina and vanadia/zirconia catalysts. Therefore, V5+ spectral signals are generally not representative of the percent vanadia reduction during the methanol oxidation redox cycle, although estimates made from the high temperature, low methoxy surface coverage IR spectra suggest that the catalyst surfaces remain mostly oxidized during steady-state methanol oxidation (15–25% vanadia reduction). Finally, adsorbed surface methoxy intermediate species were easily detected with in situ IR spectroscopy during methanol oxidation in the C–H stretching region (2800–3000 cm−1) for all studied catalysts, the vibrations occurring at different frequencies depending on the specific metal oxide upon which they chemisorb. However, methoxy bands were only found in a few cases using in situ Raman spectroscopy due to the sensitivity of the Raman scattering cross-sections to the specific substrate onto which the surface methoxy species are adsorbed.

in situ spectroscopy methanol oxidation oxide catalysts vanadia Raman infrared, UV-Vis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.E. Wachs, Catal. Today 27 (1996) 437.CrossRefGoogle Scholar
  2. [2]
    J.M. Tatibouët, Appl. Catal. A 148 (1997) 213.CrossRefGoogle Scholar
  3. [3]
    I.E. Wachs, G. Deo, M.A. Vuurman, H. Hu, D.S. Kim and J.M. Jehng, J. Mol. Catal. 82 (1993) 443.CrossRefGoogle Scholar
  4. [4]
    P. Forzatti, E. Tronconi, A.S. Elmi and G. Busca, Appl. Catal. A 157 (1997) 387.CrossRefGoogle Scholar
  5. [5]
    (a) J.-M. Jehng and I.E. Wachs, J. Phys. Chem. 95 (1991) 7373; (b) M.A. Vuurman and I.E. Wachs, J. Phys. Chem. 96 (1992) 5008.CrossRefGoogle Scholar
  6. [6]
    (a) D.S. Kim and I.E. Wachs, J. Catal. 142 (1993) 166; (b) D.S. Kim and I.E. Wachs, J. Catal. 141 (1993) 419.CrossRefGoogle Scholar
  7. [7]
    Y. Matsuoka, M. Niwa and Y. Murakami, J. Phys. Chem. 94 (1990) 1477.CrossRefGoogle Scholar
  8. [8]
    (a) H. Hu and I.E. Wachs, J. Phys. Chem. 99 (1995) 10911. (b) D.S. Kim, I.E. Wachs and K. Segawa, J. Catal. 146 (1994) 268.CrossRefGoogle Scholar
  9. [9]
    X. Gao and Q. Xin, J. Catal. 146 (1994) 306.CrossRefGoogle Scholar
  10. [10]
    Z. Sojka and M. Che, J. Phys. Chem. 99 (1995) 5418.CrossRefGoogle Scholar
  11. [11]
    (a) B.M. Weckhuysen and I.E. Wachs, J. Phys. Chem. B 101 (1997) 2793; (b) B.M. Weckhuysen and I.E. Wachs, J. Phys. Chem. 100 (1996) 14437.CrossRefGoogle Scholar
  12. [12]
    (a) I.E. Wachs and B.M. Weckhuysen, Appl. Catal. A 157 (1997) 67; (b)L.J. Burcham and I.E. Wachs, Catal. Today 49 (1999) 467.CrossRefGoogle Scholar
  13. [13]
    J.-M. Jehng, G. Deo, B.M. Weckhuysen and I.E. Wachs, J. Mol. Catal. A 110 (1996) 41.CrossRefGoogle Scholar
  14. [14]
    M.C. Paganini, L. Dall’Acqua, E. Giamello, L. Lietti, P. Forzatti and G. Busca, J. Catal. 166 (1997) 195.CrossRefGoogle Scholar
  15. [15]
    (a) N.-Y. Topsøe, H. Topsøe and J.A. Dumesic, J. Catal. 151 (1995) 226; (b) N.-Y.Topsøe, J.A. Dumesic and H. Topsøe, J. Catal. 151 (1995) 241; (c) N.-Y. Topsøe, J. Catal. 128 (1991) 499.CrossRefGoogle Scholar
  16. [16]
    S. Pak, C.E. Smith, M.P. Rosynek and J.H. Lunsford, J. Catal. 165 (1997) 73.CrossRefGoogle Scholar
  17. [17]
    (a) G.T. Went, S.T. Oyama and A.T. Bell, J. Phys. Chem. 94 (1990) 4240; (b) A. Khodakov, B. Olthof, A.T. Bell and E. Iglesia, J. Catal. 181 (1999) 205; (c) A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal. 177 (1998) 343; (d) G.T. Went, L.J. Leu, R.R. Rosin and A.T. Bell, J. Catal. 134 (1992) 492.CrossRefGoogle Scholar
  18. [18]
    K. Inumaru, M. Misono and T. Okuhara, Appl. Catal. A 149 (1997) 133.CrossRefGoogle Scholar
  19. [19]
    (a) F. Hatayama, T. Ohno, T. Maruoka, T. Ono and H. Miyata, J. Chem. Soc., Faraday Trans. 87 (1991) 2629; (b) H. Miyata, M. Kohno, T. Ono, T. Ohno and F. Hatayama, J. Mol. Catal. 63 (1990) 181.CrossRefGoogle Scholar
  20. [20]
    (a) I.E. Wachs, G. Deo, M.V. Juskelis and B.M. Weckhuysen, in: Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, eds. G.F. Froment and K.C. Waugh (Elsevier, Amsterdam, 1997) pp. 305–314; (b) I.E. achs, in: Catalysis, Vol. 13, ed. J.J. Spivey (The Royal Society of Chemistry, Cambridge, 1997) pp. 37–54.Google Scholar
  21. [21]
    (a) G. Deo, I.E. Wachs and J. Haber, Crit. Rev. Surf. Chem. 4 (1994) 141; (b) G. Deo and I.E. Wachs, J. Catal. 146 (1994) 323; (c) G. Deo and I.E. Wachs, ACS Symp. Ser. 523 (1993) 31; (d) G. Deo and I.E. Wachs, J. Catal. 129 (1991) 307.Google Scholar
  22. [22]
    (a) S.C. Su and A.T. Bell, J. Phys. Chem. B 102 (1998) 7000; (b) G.T. Went, L.J. Leu and A.T. Bell, J. Catal. 134 (1992) 479; (c) G.T. Went, L.J. Leu, S.J. Lombardo and A.T. Bell, J. Phys. Chem. 96 (1992) 2235; (d) S.T. Oyama, G.T. Went, K.B. Lewis, A.T. Bell and G.A. Somorjai, J. Phys. Chem. 93 (1989) 6786.CrossRefGoogle Scholar
  23. [23]
    F. Arena, F. Frusteri and A. Parmaliana, Appl. Catal. A 176 (1999) 189.CrossRefGoogle Scholar
  24. [24]
    N. Nag, K. Chary and V. Subrahmanyam, J. Chem. Soc., Chem. Commun. (1986) 1147.Google Scholar
  25. [25]
    (a) U. Scharf, M. Schneider, A. Baiker and A. Wokaun, J. Catal. 149 (1994) 344; (b) B.E. Handy, A. Baiker, M. Schraml-Marth and A. Wokaun, J. Catal. 133 (1992) 1; (c) U. Scharf, M. Schraml-Marth, A. Wokaun and A. Baiker, J. Chem. Soc., Faraday Trans. 87 (1991) 3299; (d) J. Kijenski, A. Baiker, M. Glinski, P. Dollenmeier and A. Wokaun, J. Catal. 101 (1986) 1.CrossRefGoogle Scholar
  26. [26]
    F. Roozeboom, P.D. Cordingley and P.J. Gellings, J. Catal. 68 (1981) 464.CrossRefGoogle Scholar
  27. [27]
    (a) C. Cristiani, P. Forzatti and G. Busca, J. Catal. 116 (1989) 586; (b) I.E. Wachs, J. Catal. 124 (1990) 570; (c) G. Ramis, C. Cristiani, P. Forzatti and G. Busca, J. Catal. 124 (1990) 574.CrossRefGoogle Scholar
  28. [28]
    F.D. Hardcastle and I.E. Wachs, J. Phys. Chem. 95 (1991) 5031.CrossRefGoogle Scholar
  29. [29]
    (a) L. Owens and H.H. Kung, J. Catal. 148 (1994) 587; (b) L. Owens and H.H. Kung, J. Catal. 144 (1993) 202; (c) P.J. Andersen and H.H. Kung, J. Phys. Chem. 96 (1992) 3114.CrossRefGoogle Scholar
  30. [30]
    X. Gao, S.R. Bare, B.M Weckhuysen and I.E. Wachs, J. Phys. Chem. B 102 (1998) 10842.CrossRefGoogle Scholar
  31. [31]
    J.-M. Jehng, H. Hu, X. Gao and I.E. Wachs, Catal. Today 28 (1996) 335.CrossRefGoogle Scholar
  32. [32]
    G. Busca, A.S. Elmi and P. Forzatti, J. Phys. Chem. 91 (1987) 5263.CrossRefGoogle Scholar
  33. [33]
    W.L. Holstein and C.J. Machiels, J. Catal. 162 (1996) 118.CrossRefGoogle Scholar
  34. [34]
    (a) M.M. Ostromecki, L.J. Burcham, I.E. Wachs, N. Ramani and J. Ekerdt, J. Mol. Catal. A 132 (1998) 59; (b) M.M. Ostromecki, L.J. Burcham and I.E. Wachs, J. Mol. Catal. A 132 (1998) 43.CrossRefGoogle Scholar
  35. [35]
    L.J. Burcham, Ph.D. dissertation, Lehigh University, Bethlehem, PA (1999).Google Scholar
  36. [36]
    A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1968).Google Scholar
  37. [37]
    B.M. Weckhuysen and R.A. Schoonheydt, Catal. Today 49 (1999) 441.CrossRefGoogle Scholar
  38. [38]
    G. Busca, Catal. Today 27 (1996) 457.CrossRefGoogle Scholar
  39. [39]
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed. (Wiley, New York, 1986).Google Scholar
  40. [40]
    J.H. Noggle, Physical Chemistry, 2nd Ed. (Harper Collins, New York, 1989).Google Scholar
  41. [41]
    X. Gao and I.E. Wachs, unpublished results.Google Scholar
  42. [42]
    (a) E. Ahlborn, E. Diemann and A. Müller, Z. Anorg. Allg. Chem. 394 (1972) 1; (b) D.N. Sathyanarayana and C.C. Patel, Bull. Chem. Soc. Jpn. 37 (1964) 1736; (c) B. Soptrajanov, A. Nikolovskii and I. Petrov, Spectrochim. Acta Part A 24A (1968) 1617.CrossRefGoogle Scholar
  43. [43]
    G. Busca, E. Finocchio, V. Lorenzelli, G. Ramis and M. Baldi, Catal. Today 49 (1999) 453.CrossRefGoogle Scholar
  44. [44]
    (a) M. Ruitenbeek, R.A. Overbeek, A.J. van Dillen, D.C. Koningsberger and J.W. Geus, Recl. Trav. Chim. Pays-Bas 115 (1996) 519; (b) M. Ruitenbeek, Ph.D. Dissertation, Utrecht University, Utrecht (1999).Google Scholar
  45. [45]
    A.T. Bell, in: Vibrational Spectroscopy of Molecules on Surfaces, eds. J.T. Yates and T.E. Madey (Plenum, New York, 1987) pp. 105–134.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Loyd J. Burcham
    • 1
  • Goutam Deo
    • 2
  • Xingtao Gao
    • 1
  • Israel E. Wachs
    • 1
  1. 1.Zettlemoyer Center for Surface Studies and Department of Chemical EngineeringLehigh University, BethlehemUSA
  2. 2.Department of Chemical EngineeringIndian Institute of TechnologyIndia

Personalised recommendations