Perspectives in Drug Discovery and Design

, Volume 9, Issue 0, pp 19–34 | Cite as

Comparative binding energy analysis

  • Rebecca C. Wade
  • Angel R. Ortiz
  • Federico Gago


Polymer Binding Energy Energy Analysis Comparative Binding Binding Energy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kubinyi, H., QSAR: Hansch analysis and related approaches, VCH, Weinheim, 1993.Google Scholar
  2. 2.
    Kubinyi, H. (Ed.), 3D-QSAR in drug design: Theory, methods and applications, ESCOM, Leiden, 1993.Google Scholar
  3. 3.
    Kuntz, I.D., Structure-based strategies for drug design and discovery, Science 257 (1992) 1078–1082.Google Scholar
  4. 4.
    Blundell, T.L., Structure-based drug design, Nature, 384 Suppl. (1996) 23–26.Google Scholar
  5. 5.
    Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., Application of the three-dimensional structures of protein target molecules in structure-based drug design, J. Med. Chem., 37 (1994) 1035–1054.Google Scholar
  6. 6.
    Hogan, J.C., Directed combinatorial chemistry, Nature, 384 Suppl. (1996) 17–19.Google Scholar
  7. 7.
    Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C., Prediction of drug binding affinities by comparative binding energy analysis, J. Med. Chem., 38 (1995) 2681–2691.Google Scholar
  8. 8.
    Ortiz, A.R., Pisabrro, M.T., Gago, F. and Wade, R.C., Prediction of drug binding affinities by comparative binding energy analysis: Application to human synovial fluid phospholipase A2 Inhibitors, In QSAR and molecular modelling: Concepts, computational tools and biological applications, Sanz, F., Giraldo, J. and Manaut, F. (Eds.) J.R. Prous, Barcelona, 1995, pp. 439–443.Google Scholar
  9. 9.
    Cramer, III, R.D., Patterson, D.E. and Bunce, J.D., Comparative molecular field analysis (CoMFA): 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959–5967.Google Scholar
  10. 10.
    Straatsma, T.P. and McCammon, J.A., Computational alchemy, Ann. Rev. Phys. Chem., 43 (1992) 407–435.Google Scholar
  11. 11.
    Kollman, P., Free energy calculations: Applications to chemical and biochemical phenomena, Chem. Rev., 93 (1993) 2395–2417.Google Scholar
  12. 12.
    Blaney, J.M., Weiner, P.K., Dearing, A., Kollman, P.A., Jorgensen, E.C., Oatley, S.J., Burridge, J.M. and Blake, C.C.F., Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogues to prealbumin, J. Am. Chem. Soc., 104 (1982) 6424–6434.Google Scholar
  13. 13.
    Menziani, M.C., De Benedetti, P.G., Gago, F. and Richards, W.G., The binding of benzene sulfonamides to carbonic anhydrase enzyme: A molecular mechanics study and quantitative structure-activity rela-tionship, J. Med. Chem., 32 (1989) 951–956.Google Scholar
  14. 14.
    Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J., deSolms, S.J., Gaffin, N., Ghosh, A.K., Giuliani, E.A., Graham, S.L., Guare, J.P., Hungate, R.W., Lyle, T.A., Sanders, W.M., Tucker, T.J., Wiggins, M., Wiscount, C.M., Woltersdorf, O.W., Young, S.D., Darke, P.L. and Zugay, J.A. A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38 (1995) 305–317.Google Scholar
  15. 15.
    Grootenhuis, P.D.J. and van Galen, P.J.M., Correlation of binding affinities with non-bonded interaction energies of thrombin-inhibitor complexes, Acta Cryst., D51 (1995) 560–566.Google Scholar
  16. 16.
    Åqvist, J., Medina, C. and Samuelsson, J.E., A new method for predicting binding affinity in computer-aided drug design, Prot. Eng., 7 (1994) 385–391.Google Scholar
  17. 17.
    Böhm, H.-J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comput-Aided Mol. Design, 8 (1994) 243–256.Google Scholar
  18. 18.
    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc., 118 (1996) 3959–3969.Google Scholar
  19. 19.
    Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F. and Wade, R.C., Reliability of comparative molecular field analysis models: Effects of data scaling and variable selection using a set of human synovial phospholipase A2 inhibitors, J. Med. Chem. (1997) 40, 1136–1148.Google Scholar
  20. 20.
    Honig, B. and Nicholls, A., Classical electrostatics in biology and chemistry, Science, 268 (1995) 1144–1149.Google Scholar
  21. 21.
    Wold, S., PLS-partial least squares projections to latent structures, In 3D-QSAR in drug design: Theory, methods and applications, Kubinyi, H. (Ed.), ESCOM, Leiden, 1993, pp. 523–550.Google Scholar
  22. 22.
    Baroni, M., Constantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3DQSAR problems, Quant. Struct.-Act. Relat., 12 (1993) 9–20.Google Scholar
  23. 23.
    Schevitz, R.W., Bach, N.J., Carlson, D.G., Chrigadze, N.Y., Clawson, D.K., Dillard, R.D., Draheim. S.E., Hartley, L.W., Jones, N.D., Mihelich, E.D., Olkowski, J.L., Snyer, D.W., Sommers, C. and Wery, J.-P., Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretary Phospholipase A 2+, Nat. Struct. Biol., 2 (1995) 458–465.Google Scholar
  24. 24.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc., 117 (1995) 5179–5197.Google Scholar
  25. 25.
    Gilson, M.K., Sharp, K.A. and Honig, B.H., Calculating the electrostatic potential of molecules in solution: Method and error assessment, J. Comput. Chem., 9 (1987) 327–335.Google Scholar
  26. 26.
    Wheeler, T.N., Blanchard, S.G., Andrews, R.C., Fang, F., Gray-Nunez, Y., Harris, C.O., Lambert, M.H., Mehrotra, M.M., Parks, D.J., Ray, J.A. and Smalley, T.L., Substrate specificity in short-chain phospholipid analogs at the active site of human synovial phospholipase A 2+ , J. Med. Chem., 37 (1995) 4118–4129.Google Scholar
  27. 27.
    Ajay and Murcko, M.A., Computational methods to predict binding free energy in ligand-receptor complexes, J. Med. Chem., 38 (1995) 4953–4967.Google Scholar
  28. 28.
    Gilson, M.K., Given, J.A., Bush, B.L. and McCammon, J.A., The statistical thermodynamic basis for computation of binding affinities: a critical review, Biophys. J., 72 (1997) 1047–1069.Google Scholar
  29. 29.
    Lybrand, T.P., Ligand-protein docking and rational drug design, Curr. Op. Str. Biol. 5 (1995) 224–228.Google Scholar
  30. 30.
    Checa, A., Ortiz, A.R., de Pascual Teresa, B. and Gago, F., Assessment of solvation effects on calculated binding affinity differences: Trypsin inhibition by flavonoids as a model system for congeneric series. Med. Chem., in press.Google Scholar
  31. 31.
    Mattos, C. and Ringe, D., Multiple binding modes, In 3D QSAR in Drug design: Theory, methods and applications, Kubinyi, H., (Ed.) ESCOM, Leiden, 1993, pp. 226–254.Google Scholar
  32. 32.
    Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallog., 24 (1991) 946–950.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Rebecca C. Wade
  • Angel R. Ortiz
  • Federico Gago

There are no affiliations available

Personalised recommendations