Molecular Breeding

, Volume 9, Issue 2, pp 73–80 | Cite as

Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants

  • Nancy H. Roosens
  • Fawaz Al Bitar
  • Kristof Loenders
  • Geert Angenon
  • Michel Jacobs
Article

Abstract

Accumulationof proline is a way to increase tolerance to water stress in plants. Therefore,considerable attention has been devoted to optimise proline biosynthesis intransgenic plants. Glutamate and ornithine are both precursors of proline butwhile genes of the glutamate pathway were overexpressed in transgenic plants,no gene encoding an enzyme of the ornithine pathway was considered until now. Thepresent study aims to establish if the overexpression ofornithine-δ-aminotransferase (δ-OAT) represents an additional wayto increase proline content. To achieve this goal, anArabidopsis δ-OAT cDNA was fused to the CaMV35Spromoter and introduced via Agrobacterium transformationinto Nicotiana plumbaginifolia. Overexpression of theδ-OAT cDNA in the analysed transgenic lines was linked to an increase inδ-OAT enzyme activity. The transgenic lines presenting high enzymaticactivity synthesized more proline than the control plants and showed a higherbiomass and a higher germination rate under osmotic stress conditions. Thesestudies reveal a new and efficient way to increase proline content in plantsand to enhance crop tolerance.

Ornithine-amino-transferase Osmotolerance Proline overproduction Transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspinall D. and Paleg L.G. 1981. Proline accumulation: physiological aspects. In: Paleg L.G. and Aspinall D. (eds), The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sidney, pp. 205-241.Google Scholar
  2. Bates L.S. 1973. Rapid determination of free proline for waterstress studies. Plant Soil 39: 205-207.Google Scholar
  3. Bradfort M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem. 72: 248-254.Google Scholar
  4. Cram W.J. 1984. Mannitol transport and suitability as an osmoticum in root cells. Physiol. Plant 61: 396-404.Google Scholar
  5. Csonka L.N. 1988. Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. J. Bacteriol. 170: 2374-2378.Google Scholar
  6. Delauney A.J. and Verma D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223.Google Scholar
  7. François L.E. and Maas E.V. 1994. Crop response and management on salt-affected soils. In: Pessarakli M. and Dekker M. (eds), Handbook of Plant and Crop Stress. M. Dekker, Inc, New york, pp. 149-181.Google Scholar
  8. Hong Z., Lakkineni K., Zhang Z. and Verma D.P.S. 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122: 1129-1136.Google Scholar
  9. Hervieu F., Le Dily L., Huault C. and Billard J.-P. 1995. Contribution of ornithine aminotransferase to proline accumulation in NaCl-treated radish cotyledons. Plant, Cell Environ. 18: 205-210.Google Scholar
  10. Hu C.-A.A., Delauney A.J. and Verma D.P.S. 1992. A bifunctionnal enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyses the first two steps in proline biosynthesis in plants. Proc. Natl. Acad Sci. USA 89: 9354-9358.Google Scholar
  11. Kandpal R.P. and Rao N.A. 1982. Water stress induced alterations in the properties of ornithine aminotransferase from Ragi (Eleusine coracana) leaves. Bioch. International. 5: 297-302.Google Scholar
  12. Kishor B.P.K., Hong Z., Miao G.-H., Hu C.-A.A. and Verma D.P.S. 1995. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.Google Scholar
  13. Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K. and Shinozaki K. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8: 1323-1335.Google Scholar
  14. Le Rudelier D., Strom A.R., Dandekar A.M., Smith L.T. and Valentine R.C. 1984. Molecular biology of osmoregulation. Science 224: 1064-1068.Google Scholar
  15. Mani S., Van de Cotte B., Van Montagu M. and Verbruggen N. 2002. Altered levels in proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Phys. 128: 1-11.Google Scholar
  16. Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bio-assay with tobacco tissue culture. Physiol Plant 15: 473-479.Google Scholar
  17. Nanjo T., Kobayashi M., Yoshiba Y., Kabubari Y., Yamaguchi-Shinozaki K. and Shinozaki K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461: 205-210.Google Scholar
  18. Peng Z., Lu Q. and Verma D.P.S. 1996. Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. Gen. Genet. 253: 334-341.Google Scholar
  19. Rena A.B. and Spilttstoesser W.E. 1975. Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. Phytochemistry 14: 657-661.Google Scholar
  20. Rentsch D., Hirner B., Schmelzer E. and Frommer W.B. 1996. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8: 1437-1446.Google Scholar
  21. Rerie W.G., Whitecross M. and Higgins T.J.V. 1991. Developmental and environmental regulation of pea legumin genes in transgenic tobacco. Mol. Gen. Genet. 225: 148-157.Google Scholar
  22. Roosens N.H.C.J., Thu T.T., Iskandar H.M. and Jacobs M. 1998. Isolation of ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263-271.Google Scholar
  23. Roosens N.H., Willem R., Li Y., Verbruggen I., Biesemans M. and Jacobs M. 1999. Proline metabolism in the wild-type and salt tolerant mutant of Nicotiana plumbaginifolia studied by 13C-nuclear magnetic resonance imaging. Plant Physiol. 121: 1281-1290.Google Scholar
  24. Savouré A., Jaoua S., Hua X.-J., Ardiles W., Van Montagu M. and Verbruggen N. 1995. Isolation, characterization, and chromosomal location of a gene encoding the Δ1-pyrroline-5 carboxylate synthetase in Arabidopsis thaliana. FEBS Lett. 372: 13-19.Google Scholar
  25. Schobert B. and Tschesche H. 1978. Unusual solution properties of proline and its interaction with proteins. Biochim. Biophys. Acta. 541: 270-277.Google Scholar
  26. Smirnoff N. and Cumbes Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060.Google Scholar
  27. Szoke A., Miao G.-H., Hong Z. and Verma D.P.S. 1992. Subcellular location of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 99: 1642-1649.Google Scholar
  28. Vaucheret H., Chabaud M., Kronenberger J. and Caboche M. 1990. Functional complementation of tobacco and Nicotiana Plumbaginifolia nitrate reductase deficient mutants by transformation with the wild-type alleles of the tobacco structural genes. Mol. Genet. 220: 468-474.Google Scholar
  29. Venekamp J.H., Lamp J.E.M. and Koot J.T.M. 1989. Organic acid as sources of drought-induced proline synthesis in field bean plants, Vicia faba L. J Plant Physiol. 133: 654-659.Google Scholar
  30. Verbruggen N., Villarroel R. and Van Montagu M. 1993. Osmoregulation of pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol. 103: 771-781.Google Scholar
  31. Verbruggen N., Hua X.J., May M. and Van Montagu M. 1996. Environmental and developmental signals modulate proline homeostasis: Evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. 93: 8787-8791.Google Scholar
  32. Yoshiba Y., Kiyosue T., Katagiri T., Ueda H., Mizoguchi T., Yamaguchi-Shinozaki K. et al. 1995. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic tress. The Plant Journal 7: 751-760.Google Scholar
  33. Zhu B., Su J., Chang M., Verma D.P.S., Fan Y.L. and Wu R. 1998. Over expression of pyrrolive-s-carboxylate synthetase gene and analysis of Tolerance to water and salt-stress in Transgenic Rice. Plant Science 10: 41-48.Google Scholar
  34. Zonia I., Stebbins N. and Polacco J. 1995. Essential role of urease in germination of Nitrogen-Limitated Arabidopsis thaliana seeds. Plant Physiol. 107: 1097-1103.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Nancy H. Roosens
    • 1
  • Fawaz Al Bitar
    • 2
  • Kristof Loenders
    • 1
  • Geert Angenon
    • 1
  • Michel Jacobs
    • 1
  1. 1.Laboratorium voor PlantengeneticaVrije Universiteit BrusselPaardenstraatBelgium
  2. 2.Laboratoire de Physiologie VégétaleUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations