Advertisement

General Relativity and Gravitation

, Volume 31, Issue 12, pp 1921–1929 | Cite as

Quantum Features of Non-Symmetric Geometries

  • M. I. Wanas
  • M. E. Kahil
Article

Abstract

Paths in an appropriate geometry are usuallyused as trajectories of test particles in geometrictheories of gravity. It is shown that non-symmetricgeometries possess some interesting quantum features. Without carrying out any quantization schemes,paths in such geometries are naturally quantized. Twodifferent non-symmetric geometries are examined forthese features. It is proved that, whatever thenon-symmetric geometry is, we always get the same quantumfeatures. It is shown that these features appear only inthe pure torsion term (the anti-symmetric part of theaffine connection) of the path equations. The vanishing of the torsion leads to the disappearance ofthese features, regardless of the symmetric part of theconnection. It is suggested that, in order to beconsistent with the results of experiments andobservations, torsion term in path equations should beparametrized using an appropriate parameter.

QUANTUM NON-SYMMETRIC GEOMETRIES TORSION 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Robertson, H. P. (1932). Ann. Math. (Princeton) 33, 496; Mikhail, F. I. (1952). Ph.D. Thesis, London University; Møller, C. (1978). Matematisk-Fysiske Skrifter udgivet af Del Kongelige Danske Videnskabernes Selskab A 39, 1; Hayashi, K., and Shirafuji, T. (1979). Phys. Rev. D 19, 3524.Google Scholar
  2. 2.
    Einstein, A. (1955). The Meaning of Relativity (Princeton University Press, Princeton NJ); Moffat, J. W. (1995). J. Math. Phys. 36, 3722.Google Scholar
  3. 3.
    Wanas, M. I., Melek, M., and Kahil, M. E. (1995). Astrophys. Space Sci. 228, 273.Google Scholar
  4. 4.
    Bazanski, S. L. (1977). Ann. Instiut H. Poincaré A 27, 145; Bazanski, S. L. (1989). J. Math. Phys. 30, 1018.Google Scholar
  5. 5.
    Isham, C. J. (1997). In Proc. General Relativity and Gravitation 14, M. Francaviglia, ed. (World Scientific, Singapore).Google Scholar
  6. 6.
    Wanas, M. I. (1998). Astrophys. Space Sci. 258, 237.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • M. I. Wanas
  • M. E. Kahil

There are no affiliations available

Personalised recommendations