Space Science Reviews

, Volume 94, Issue 1–2, pp 39–51 | Cite as

Short Term, Direct Indices of Solar Variability

  • J.L. Lean
Article

Abstract

Indices of solar activity relevant for understanding and modelling solar irradiance variability are identified, and their temporal characteristics compared. Reproducing observed solar irradiance variability requires a minimum of two different types of indices — an index for irradiance depletion by sunspots and an index for global irradiance enhancement by faculae and network. When combined with appropriate wavelength-dependent parameterizations of sunspot and facular contrasts and center-to-limb functions, these indices permit the construction of empirical models of daily, monthly and annual solar total and spectral irradiances. The models are compared with observations at selected wavelengths and for the total irradiance. While the models replicate much of the rotational and 11-year cycle variance in contemporary irradiance databases, differences exist because of either the presence of variability mechanisms additional to solar magnetism, or of unresolved instrumental effects in the databases. The reconstruction of solar irradiance in the past requires speculation about the extent of intercycle fluctuations in the global facular index, or in other, as yet unspecified, variability mechanisms.

Keywords

Solar Activity Empirical Model Temporal Characteristic Solar Irradiance Cycle Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. W.: 1981, Astrophysical Quantities, 3rd Edition, Athlone, London.Google Scholar
  2. Beer, J.: 2000, ‘Long-Term Indirect Indices of Solar Variability’ Space Sci. Rev., this volume.Google Scholar
  3. de Toma, G., White, O. R., Knapp, B.G., Rottman, G. J., and Woods, T. N.: 1997, ‘Mg II core-to-wing index: Comparison of SBUV 2 and SOLSTICE time series’, J. Geophys. Res. 102, 2597.Google Scholar
  4. Fligge, M., and Solanki, S. K.: 1997, ‘Inter-cycle variations of solar irradiance: Sunspot areas as a pointer’, Solar Phys. 173, 427.Google Scholar
  5. Fontenla, J., White, O. R., Fox, P. A., Avrett, E. H., and Kurucz, R. L.: 1999, ‘Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum’, Astrophys. J. 518, 480.Google Scholar
  6. Foukal, P.: 1998, ‘Extension of the F10.7 Index to 1905 using Mt. Wilson Ca K Spectroheliograms’, Geophys. Res. Lett. 25, 2902.Google Scholar
  7. Foukal, P. and Lean, J.: 1988, ‘Magnetic Modulation of Solar Luminosity by Photospheric Activity’, Astrophys. J. 328, 347.Google Scholar
  8. Fröhlich, C.: 2000, Space Sci. Rev., this volume.Google Scholar
  9. Fröhlich, C. and Lean, J.: 1998, ‘The Sun's Total Irradiance: Cycles, Trends and Climate Change Uncertainties since 1976’, Geophys. Res. Lett. 25, 4377.Google Scholar
  10. Harvey, K. L., and White, O. R.: 1998, ‘Spectral Irradiances and Magnetic Structures’, Astronomical Society of the Pacific Conference Series 140, 247.Google Scholar
  11. Hoyt, D. V., and Schatten, K. H.: 1993, ‘A Discussion of Plausible solar irradiance variations’, J. Geophys. Res. 98, 18,895.Google Scholar
  12. Hoyt, D. V., and Schatten, K. H.: 1997, ‘The Role of the Sun in Climate Change’, Oxford University Press, Oxford.Google Scholar
  13. Hoyt, D. V., Schatten, K. H., and Nesme-Ribes, E.: 1994, ‘The One Hundredth Year of Rudolf Wolf's Death: Do we have the Correct Reconstruction of Solar Activity?’, Geophys. Res. Lett. 21, 2067.Google Scholar
  14. Kuhn, J. R., and Libbrecht, K.: 1991, ‘Nonfacular Solar Luminosity Variations’, Astrophys. J. 381, L35.Google Scholar
  15. Lean, J., and Rind, D.: 1998, ‘Climate forcing by changing solar radiation’, J. Climate 11, 3069.Google Scholar
  16. Lean, J. L., Rottman, G. J., Kyle, H. L.,Woods, T. N., Hickey, J. R., and Puga, L. C.: 1997, ‘Detection and parameterization of variations in solar mid and near ultraviolet radiation (200 to 400 nm)’, J. Geophys. Res. 102, 29939.Google Scholar
  17. Lean, J. L., Cook, J., Marquette, W., and Johannesson, A.: 1998, ‘Magnetic modulation of the solar irradiance cycle’, Astrophys. J. 492, 390.Google Scholar
  18. Rottman, G.: 2000, Space Sci. Rev., 1991-1999’, this volume.Google Scholar
  19. Sofia, S., and Fox, P.: 1994, ‘Solar Variability and Climate’, Climate Change 30, 1.Google Scholar
  20. Solanki, S. K., and Unruh, Y. C.: 1998, ‘A model of the wavelength dependence of solar irradiance variations’, Astron. Astrophys. 329, 747.Google Scholar
  21. Unruh, Y. C., Solanki, S. K., and Fligge, M.: 2000, ‘Modelling Solar Spectral Irradiance Variations’, Space Sci. Rev., this volume.Google Scholar
  22. White, O. R., Skumanich, A., Lean, J., Livingston, W. C., and Keil, S. L.: 1992, ‘The Sun in a Non-cycling State’, Publications of the Astronomical Society of the Pacific 104, 1139.Google Scholar
  23. White, O. R., Livingston, W. C., and Keil, S. L.: 1998,’ Variability of the Solar CaII K Line over the 22 Year Hale cycle’, Astronomical Society of the Pacific Conference Series 140, 293.Google Scholar
  24. Willson, R. C.: 1997, ‘Total Solar Irradiance Trend During Solar Cycles 21 and 22’, Science 277, 1963.Google Scholar
  25. Worden, J. R., White, O. R., and Woods, T. N.: 1998, ‘Evolution of chromospheric structures derived from CaII K spectroheliograms: implications for solar ultraviolet irradiance variability’, Astrophys. J. 496, 998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J.L. Lean
    • 1
    • 2
  1. 1.E. O. Hulburt Center for Space ResearchUSA
  2. 2.Naval Research LaboratoryWashingtonU.S.A.

Personalised recommendations