Space Science Reviews

, Volume 94, Issue 1–2, pp 397–409 | Cite as

Solar Variability and Clouds – Discussion Session 3c

  • Jasper Kirkby
  • Ari Laaksonen


Satellite observations have recently revealed a surprising imprint of the 11-year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how.


Solar Wind Solar Cycle Cloud Cover Energy Radiation Satellite Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. J., Miller, R. C., Kassner, J. L. Jr., and Hagen, D. E.: 1980, ‘A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber’, J. Atmospheric Sciences 37, No. 11, 2508–2520.Google Scholar
  2. Arnold, F.: 1980, ‘Multi-ion complexes in the stratosphere: implications for trace gases and aerosols’, Nature 284, 610.Google Scholar
  3. Bricard, J. et al.: 1968, ‘Formation and evolution of nuclei of condensation that appear in air initially free of aerosols’, J. Geophys. Res. 73, 4487.Google Scholar
  4. Cheng, C.-C., Tao, C.-J., and Shu, H.-J.: 2000, ‘Heterogeneous nucleation of n-butanol vapour on sub-micrometer charged and neutral particles of lactose and monosodium glutamate’, J. Colloid Interface Sci. 224, 11.Google Scholar
  5. Clarke, A.D. et al.: 1998, ‘Particle nucleation in the tropical boundary layerand its coupling tomarine sulfur sources’, Science 282, 89.Google Scholar
  6. CLOUD collaboration (B. Fastrup et al.): 2000, CERN proposal SPSC/P317, SPSC 2000-021.Google Scholar
  7. Eichkorn, S., Wohlfrom, K. H., and Arnold, F.: 2000, ‘Massive ion detection in the upper troposphere: implications for aerosol particle formation via ion-induced nucleation’, poster presented at the EGS General Assembly, The Hague.Google Scholar
  8. Fröhlich, C.: 2000, ‘Observations of Irradiance Variability’, Space Sci. Rev., this volume.Google Scholar
  9. Harrison, R.G.: 2000, ‘Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei’, Space Sci. Rev., this volume.Google Scholar
  10. Hartmann, D. L.: 1993, ‘Radiative effects of clouds on Earth's climate, in P. V. Hobbs (ed.), Aerosol-Cloud-Climate Interactions, International Geophysics Series, Vol. 54, Academic Press Inc., San Diego, 151.Google Scholar
  11. Hõrrak, U., Salm, J., and Tammet, H.: 1998, Bursts of intermediate ions in atmospheric air, J. Geophys. Res. 103 D12, 13909.Google Scholar
  12. Kernthaler, S. C., Toumi, R. and Haigh, J. D.: 1999, ‘Some doubts concerning a link between cosmic ray fluxes and global cloudiness’, Geophys. Res. Lett. 26, 863.Google Scholar
  13. Larkin, A., Haigh, J. D., and Djavidnia, S.: 2000, ‘The effect of UV Irradiance Variations on the Earth's Atmosphere’, Space Sci. Rev., this volume.Google Scholar
  14. Lean, J. L.: 2000, ‘Short term, indirect indices of solar variability’, Space Sci. Rev., this volume.Google Scholar
  15. Lockwood, M., Stamper, R., and Wild, M.N.: 1999, ‘A doubling of the Sun's coronal magnetic field during the past 100 years’, Nature 399, 437.Google Scholar
  16. Mann, M. E., Bradley, R. S., and Hughes, M. K.: 1999, ‘Northern hemisphere temperatures during the past millennium: inferences, uncertainties and limitations’, Geophys. Res. Lett. 26, 759.Google Scholar
  17. Marsh, N., and Svensmark, H.: 2000a, ‘Cosmic Rays, Clouds and Climate’, Space Sci. Rev., this volume.Google Scholar
  18. Marsh, N., and Svensmark, H.: 2000b, ‘Low cloud properties influenced by solar activity’, Geophys. Res. Lett., submitted.Google Scholar
  19. Pruppacher, H. R., and Klett, J. D.: 1997, Microphysics of clouds and precipitation, 2nd ed., Kluwer Academic Publishers, The Netherlands.Google Scholar
  20. Raes, F., and Janssens, A.: 1985, ‘Ion-induced aerosol formation in a H2-H2SO4 system-I. Extension of the classical theory and search for experimental evidence’, J. Aerosol Sci. 16, 217.Google Scholar
  21. Raes, F., Janssens, A., and Dingenen, R.V.: 1986, ‘The role of ion-induced aerosol formation in the lower atmosphere’, J. Aerosol Sci. 17, 466.Google Scholar
  22. Reid, G.C.: 2000,’ Solar Varibility and the Earth's Climate: Introduction and Overview’, Space Sci. Rev., this volume.Google Scholar
  23. Rosenfeld, D.: 2000, ‘Suppression of rain and snow by urban and industrial air pollution’, Science 287, 1793.Google Scholar
  24. Solanki, S.K.: 2000, ‘Reconstruction of past solar irradiance’, Space Sci. Rev., this volume.Google Scholar
  25. Stozhkov, Yu. I., et al.: 1985, ‘Rainfalls during great Forbush decreases’, Il Nuovo Cimento 18C, 335.Google Scholar
  26. Svensmark, H.: 1998, ‘Influence of cosmic rays on the Earth's climate’, Phys. Rev. Lett. 81, 5027.Google Scholar
  27. Svensmark, H., and Friis-Christensen, E.: 1997, ‘Variation in cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships’, Journal of Atmospheric and Solar-Terrestrial Physics 59, 1225.Google Scholar
  28. Tinsley, B.A.: 2000, ‘Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature and dynamics in the troposphere’, Space Sci. Rev., this volume.Google Scholar
  29. Turco, R. P., Zhao, J.-K., and Yu, F.: 1998, ‘A new source of tropospheric aerosols: ion-ion recombination’, Geophys. Res. Lett. 25, 635.Google Scholar
  30. Turco, R. P., Zhao, J.-K., and Yu, F.: 2000, ‘Ultrafine aerosol formation via ion-mediated nucleation’, Geophys. Res. Lett. 27, 883.Google Scholar
  31. Verschuren, D., Laird, K., and Cumming, B.: 2000, ‘Rainfall and drought in equatorial East Africa during the past 1100 years’, Nature 403, 410.Google Scholar
  32. Veretenenko, S. V., and Pudovkin, M. I.: 1999, ‘Variations of solar radiation input to the lower atmosphere associated with different helio/geophysical factors’, J. Atmos. Solar-Terrestrial Phys. 61, 521.Google Scholar
  33. Vohra, K. G., Subba Ramu M. C., and Muraleedharan, T. S.: 1984, ‘An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere’, Atmospheric Environment 18, 1653.Google Scholar
  34. Waibel, A. E., Peter, T., Carslaw, K. S., Oelhaf, H., Wetzel, G., Crutzen, P. J., Pöschl, U., Tsias, A., Reimer, E., and Fischer, H.: 1999, ‘Arctic ozone loss due to denitrification’, Science 283, 2064-2069.Google Scholar
  35. Yu, F., and Turco, R. P.: 2000, ‘From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation’, J. Geophys. Res., submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jasper Kirkby
    • 1
  • Ari Laaksonen
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.University of KuopioKuopioFinland

Personalised recommendations