Space Science Reviews

, Volume 94, Issue 1–2, pp 381–396 | Cite as

Cloud Formation and the Possible Significance of Charge for Atmospheric Condensation and Ice Nuclei

  • R. Giles Harrison


Cloud formation in the atmosphere is related to the presence of water vapour, cloud condensation nuclei (CCN) and ice nuclei (IN). Ionisation in the atmosphere is caused by a variety of sources, but the contribution from cosmic rays is always present and is modulated by the solar cycle. Methods of investigating the variability in ionisation are described. The mechanisms proposed by which (1) ionisation could influence cloud formation, and (2) by which changes to the CCN and IN could occur are discussed. Direct formation of sulphate CN is conceivable in atmospheric air by radioactivity, and charging of molecular clusters leads to greater collisions rates than for neutral clusters. Modification of the ice nucleation efficiency of aerosol could also have atmospheric effects through latent heat release. However in both cases definitive atmospheric experimental work is lacking and therefore any link between solar variability and clouds remains unproven.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, M., Ishida, T., Kim, T.O., and Okuyama, K.: 1998, ‘Effects of NH3 on particle formation from NO2/H2O/air and SO2/H2O/air mixtures by α-ray radiolysis’, J. Aerosol. Sci. 29, S1, 58,339–58,340.Google Scholar
  2. Aplin, K. L., and Harrison, R.G.: 1999, ‘The interaction between air ions and aerosol particles in the atmosphere’, in D. M. Taylor (ed.), Proceedings of 10th International Electrostatics Conference, Cambridge, April 1999, Institute of Physics Conference series 163, 411–414.Google Scholar
  3. Castleman, A. W.: 1982, in D. R. Schryer (ed.), Heterogeneous Atmospheric Chemistry, AGU, Washington.Google Scholar
  4. Chalmers, J. A.: 1967, Atmospheric Electricity, 2nd edition, Pergamon, Oxford.Google Scholar
  5. Clement, C. F. and Harrison, R. G.: 1992, ‘The charging of radioactive aerosols’, J. Aerosol. Sci. 23, 5, 481–504.Google Scholar
  6. Dawson, G. A., and Cardell, G. R.: 1973, Electrofreezing of supercooled waterdrops’, J. Geophys. Res. 78, 36, 8864–8866.Google Scholar
  7. Dolezalek, H., Reiter, R. and Kroling: 1985, ‘Basic comments on the Physics, occurrence in the atmosphere, and possible biological effects of air ions’, Int J. Biometeorology 29, 207–242.Google Scholar
  8. Emi, H., Shintani, E., Namiki, N., and Otani, Y.: 1998, ‘Measurement of the ion mobility distribution at a new mobility analyser with separation in axial direction to the flow’, J. Aerosol. Sci. 29, S1, S1247–S1248.Google Scholar
  9. Fletcher N. H.: 1966, ‘The physics of rainclouds’, CUP.Google Scholar
  10. Gabarashvili, T. G., and Gliki N.V.: 1967, ‘Origination of the ice phase in supercooled water under the influence of electrically charged crystals of cholesterol and naphthalene’, Izv. Atmos. and Oceanic Physics 3, 5, 570–574.Google Scholar
  11. Gerdien, H.: 1905, ‘Die absolute Messung der Spezifischen Leitfähigkeit und der Dichte des vertikalen Leitungstroms in der Atmosphäre’, J. Terr. Mag. 65, 10.Google Scholar
  12. Gringel, W.: 1978, ‘Untersuchungen zur elecktrischen Luftleitfähigkeit unter Berücksichtigung der Sonnenaktivität und der Aerosolteilchenkonzentration bis 35 km Höhe’, PhD Dissertation, Eberhard-Karls-Universität zu Tübingen.Google Scholar
  13. Gunn, R.: 1954, ‘Diffusion charging of atmospheric droplets by ions and the resulting combination coefficients’, J. Meteor 11, 339–347.Google Scholar
  14. Harrison, R.G.: 1997, ‘Climate change and the global atmospheric electrical system’, Atmospheric Environment 31, 20, 3483–3484.Google Scholar
  15. Harrison, R. G., and Lodge, B. N.: 1998, ‘A calorimeter to detect freezing in supercooled water droplets, Rev. Sci. Inst. 69, 11, 4004–4005.Google Scholar
  16. Horrak, U., Salm, J., and Tammet, H.: 1998, ‘Bursts of intermediate ions in atmospheric air’ J. Geophys. Res. 103 D12, 13909–13915.Google Scholar
  17. Katz, U.: 1968, ‘The ice nucleation activity of electrically charged and uncharged CuS particles’, in Proc. Int. Conf. on Cloud Physics, August, 26 – 30, 1968, Toronto, pp. 183–187.Google Scholar
  18. Landau, L. D., and Lifshitz, E. M.: 1980, Statistical Physics, Part 1, 3rd edition, Pergamon.Google Scholar
  19. Mason, B. J: 1971, The Physics of Clouds, OUP.Google Scholar
  20. McGorman, D. R., and Rust, W. D.: 1998, The electrical nature of storms, OUP.Google Scholar
  21. Mossop, S. C.: 1985, ‘The origin and concentration of ice crystals in clouds’, Bull. Am. Meteor. Soc. 66, 264–273.Google Scholar
  22. O’Dowd, C.D., Smith, M. H., Lowe, J. A., Harrison, R. M., Davison, B., and Hewitt, C. N.: 1996, ‘New particle formation in the marine environment’, in M. Kulmala and P. E. Wagner (eds.), Proc. 14th Int. Conf. on Nucleation and Atmospheric Aerosols, pp. 925–928.Google Scholar
  23. Paltridge, G. W.: 1965,’ Experimental measurements of the small-ion density and electrical conductivity of the stratosphere’, J. Geophys. Res. 70, 2751–2761.Google Scholar
  24. Pruppacher, H. R.: 1973, ‘Electrofreezing of supercooled water’, Pure Appl. Geophys. 104, 623–634.Google Scholar
  25. Pruppacher, H. R., and Klett, J. D.: 1997, Microphysics of clouds and precipitation, 2nd edition, Kluwer.Google Scholar
  26. Pudovkin, M. I., and Veretenenko, S. V.: 1995, ‘Cloudiness decreases associated with Forbush–decreases of galactic cosmic rays’, J. Atmos. Terr. Phys. 75, 1349–1355.Google Scholar
  27. Raes, F., Janssens, A., and Van Dingenen, R.: 1986, ‘The role of ion-induced aerosol formation in the lower atmosphere’, J. Aerosol. Sci. 17, 3, 466–470.Google Scholar
  28. Reiter, R.: 1974, in H. Dolezalek and R. Reiter (eds.), Electric Processes in Atmospheres, Steinkopff, Darmstadt, FRG, 1977.Google Scholar
  29. Rogers, R. R., and Yau, M. K.: 1989, A short course in cloud physics, Pergamon, 3rd edition.Google Scholar
  30. Rosinski, J., Nagamoto, C. T., and Zhou, M.Y.: 1995, ‘Ice forming nuclei over the East China Sea’, Atmospheric Research 36, 95–105.Google Scholar
  31. Rosinski, J.: 1995, ‘Cloud condensation nuclei as a real source of ice forming nuclei in continental and marine air masses’, Atmospheric Research 38, 351–359.Google Scholar
  32. Smith, M. H., Griffiths, R. F., and Latham, J.: ‘The freezing of raindrops falling through strong electric fields’, QJRMS 97, 495–505.Google Scholar
  33. Scott, J. P., and Evans, W. H.: 1969, ‘The electrical conductivity of clouds’, Pure and Appl. Geophysic. 75, 219–232.Google Scholar
  34. Svensmark, H., and Friis-Christensen, E.: 1997, ‘Variations of cosmic ray flux and global cloud coverage — a missing link in solar-climate relationships’, J. Atmos. Solar-Terrestrial Phys. 59, 1225–1232.Google Scholar
  35. Thomson, J. J.: 1924, ‘Recombination of gaseous ions, the chemical combination of gases and monomolecular reactions’, Phil. Mag 47, 337–378.Google Scholar
  36. Tinsley, B. A., and Dean, G. W.: 1991, ‘Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreeezing of supercooled water in high-level clouds?’ J. Geophys. Res. 96, 22,283–22,296.Google Scholar
  37. Tinsley, B. A., Rohrbaugh, R. P., Hei, M., and Beard K. V.: 2000, ‘Effects of image charges on the scavenging of aerosol particles by cloud droplets, and on droplet charging and possible ice nucleation processes’, J. Atmos. Sci., in press.Google Scholar
  38. Tripathi, S.N.: 2000, ‘Removal of Charged Aerosols’, PhD Thesis, University of Reading, U.K., submitted.Google Scholar
  39. Turco, R. P., Zhao, Jing-Xia, and Yu, F.: 1998, ‘A new source of tropospheric aerosols: Ion-ion recombination’ Geophys. Res. Lett. 25, 5, 635–638.Google Scholar
  40. Volland, H.: 1984, Atmospheric Electrodynamics, Springer-Verlag, Berlin.Google Scholar
  41. Wang, P. K., Grover, S. N., and Pruppacher, H. R.: 1978, ‘On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops’, J. Atmos. Sci. 34, 1735–1743.Google Scholar
  42. Yu, F., Turco, R. P., Kärcher, B., and Schroder, F. P.: 1998, ‘On the mechanisms controlling the formation and properties of volatile particles in aircraft wakes’, Geophys. Res. Lett. 25, 20, 3839–3842.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R. Giles Harrison
    • 1
  1. 1.Department of MeteorologyThe University of ReadingReadingUK

Personalised recommendations