Brain Topography

, Volume 13, Issue 2, pp 79–96 | Cite as

On the Relationship of Synaptic Activity to Macroscopic Measurements: Does Co-Registration of EEG with fMRI Make Sense?

  • Paul L. Nunez
  • Richard B. Silberstein
Article

Abstract

A two-scale theoretical description outlines relationships between brain current sources and the resulting extracranial electric field, recorded as EEG. Finding unknown sources of EEG, the so-calledg “inverse problem”, is discussed in general terms, with emphasis on the fundamental non-uniqueness of inverse solutions. Hemodynamic signatures, measured with fMRI, are expressed as voxel integrals to facilitate comparisons with EEG. Two generally distinct cell groups (1 and 2), generating EEG and fMRI signals respectively, are embedded within the much broader class of synaptic action fields. Cell groups 1 and 2 may or may not overlap in specific experiments. Implications of this incomplete overlap for co-registration studies are considered. Each experimental measure of brain function is generally sensitive to a different kind of source activity and to different spatial and temporal scales. Failure to appreciate such distinctions can exacerbate conflicting views of brain function that emphasize either global integration or functional localization.

EEG ERP fMRI PET Co-registration Generators Current sources Dipole localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M. Local Cortical Circuits. New York: Springer-Verlag, 1982.Google Scholar
  2. Abraham, K. and Ajmone-Marsan, C. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroenceph. clin. Neurophysiol., 1958, 10: 447-461.Google Scholar
  3. Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P. and Urbano, A. Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroenceph. clin. Neurophysiol., 1996, 98: 204-215.Google Scholar
  4. Babiloni, C., Carducci, F., Cincotti, F., Rossini, P.M., Neuper, C., Pfurtscheller, G. and Babiloni, F. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution study. NeuroImage, 1999, 16: 658-665.Google Scholar
  5. Basar, E. EEG Brain Dynamics. Relation Between EEG and Brain Evoked Potentials. Amsterdam: Elsevier, 1980.Google Scholar
  6. Braitenberg, V. and Schuz, A. Anatomy of the Cortex. Statistics and Geometry. New York: Springer-Verlag, 1991.Google Scholar
  7. Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J.G. and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28: 811-817.Google Scholar
  8. Connors, B.W. and Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends in Neuroscience, 1990, 13: 99-104.Google Scholar
  9. Cooper, R., Winter, A.L., Crow, H.J. and Walter, W.G. Comparison of subcortical, cortical, and scalp activity using chronically indwelling electrodes in man. Electroenceph. clin. Neurophysiol., 1965, 18: 217-228.Google Scholar
  10. Cuffin, B.N. and Cohen, D. Comparison of the magnetoencephalogram and electroencephalogram. Electroenceph. clin. Neurophysiol., 1979, 47: 136-146.Google Scholar
  11. Dale, A.M. Optimal experimental design for event-related fMRI. Human Brain Mapping, 1999, 8: 109-114.Google Scholar
  12. Ebersole, J.S. Defining epileptogenic foci: past, present, future. Journal of Clinical Neurophysiology, 1997, 14: 470-483.Google Scholar
  13. Ebersole, J.S. The last word. Journal of Clinical Neurophysiology, 1999, 16: 297-302.Google Scholar
  14. Edlinger, G., Wach, P. and Pfurtscheller, G. On the realization of an analytic high resolution EEG. IEEE Trans. Biomed. Eng., 1998, 45: 736-745.Google Scholar
  15. Friston, K.J., Josephs, O., Rees, G. and Turner, R. Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 1998, 39: 41-52..Google Scholar
  16. Gevins, A.S. and Cutillo, B.A. Signals of cognition. In: F.H. Lopes da Silva (Ed.), Handbook of Electroencephalography and Clinical Neurophysiology, Amsterdam: Elsevier, 1986, Vol. 2: 335-381.Google Scholar
  17. Gevins, A.S. and Cutillo, B.S. Neuroelectric measures of mind. In: P.L. Nunez (author), Neocortical Dynamics and Human EEG Rhythms, New York: Oxford University Press, 1995: 304-338.Google Scholar
  18. Gevins, A.S., Le, J., Martin, N., Brickett, P., Desmond, J. and Reutter, B. High resolution EEG: 124 channel recording, spatial enhancement, and MRI integration methods. Electroenceph. clin. Neurophysiol., 1994, 90: 337-358.Google Scholar
  19. Gevins, A.S., Smith, M.E., McEvoy, L. and Yu, D. High-resolution mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 1997, 7: 374-385.Google Scholar
  20. Goldensohn, E.S. Neurophysiological substrates of EEG activity. In: D.W. Klass and D.D. Daly (Eds.), Current Practice of Clinical Electroencephalography. New York: Raven Press, 1979: 421-439.Google Scholar
  21. Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J. and Lounasmaa, O.V. Magnetoencephalography-theory, instumentation, and applications to noninvasive studies of the working human brain. Reviews Modern Physics, 1993, 65: 413-497.Google Scholar
  22. Ingber, L. Statistical mechanics of multiple scales of neocortical interactions. In: P.L. Nunez (Author), Neocortical Dynamics and Human EEG Rhythms, New York: Oxford University Press, 1995: 628-681.Google Scholar
  23. Jackson, J.D. Classical Electrodynamics 2nd Ed, New York: Wiley, 1976.Google Scholar
  24. Junge, D. Nerve and Muscle Excitation, Sunderland, Mass: Sinauer Associates, 1992, 3rd Ed: 263.Google Scholar
  25. Law, S.K., Nunez, P.L. and Wijesinghe, R.S. High resolution EEG using spline generated surface Laplacians on spherical and ellipsoidal surfaces. IEEE Trans. Biomed. Eng., 1993, 40: 145-153.Google Scholar
  26. Le, J. and Gevins, A.S. Method to reduce blur distortion from EEGs using a realistic head model. IEEE Trans. Biomed. Eng., 1993, 40: 517-528.Google Scholar
  27. Leahy, R.M., Mosher, J.C., Spencer, M.E., Huang, M.X. and Lewine, J.D. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroenceph. clin. Neurophysiol., 1999, 107: 159-173.Google Scholar
  28. Liu, A.K., Belliveau, J.W. and Dale, A.M. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulation. Proceedings National Academy of Sciences USA, 1998, 95: 8945-8950.Google Scholar
  29. Malmuvino, J. and Plonsey, R. Bioelectromagetism. New York: Oxford University Press, 1995.Google Scholar
  30. Morse, P.M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, 1953.Google Scholar
  31. Mountcastle, V.B. An organizing principle for cerebral function: the unit module and the distributed system. In: F.O. Schmitt and F.G. Worden (Eds.), The Neurosciences 4th Study Program, Cambridge, MA: MIT Press, 1979.Google Scholar
  32. Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G. Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models. Human Brain Mapping, 1998, 6: 250-269.Google Scholar
  33. Mosher, J.C., Baillet, S. and Leahy, R.M. EEG source localization and imaging using multiple signal classification approaches. Journal of Clinical Neurophysiology, 1998, 16: 225-238.Google Scholar
  34. Niedermeyer, E. and Lopes da Silva, F.A. Electroencephalography: Basic Principles, Clinical Applications and Related Fields. 4th Ed. Baltimore, Maryland: Urban and Schwarzengerg, 1999.Google Scholar
  35. Nunez, P.L. The brain wave equation: A model for the EEG. Mathematical Biosciences, 1974, 21: 279-297.Google Scholar
  36. Nunez, P.L. Electric Fields of the Brain: The Neurophysics of EEG. New York: Oxford University Press, 1981.Google Scholar
  37. Nunez, P.L. Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topography, 1989, 1: 199-215.Google Scholar
  38. Nunez, P.L. Localization of brain activity with EEG. In: S. Sato (Ed.), Advances in Neurology, Magnetoencephalography, Raven Press, New York, 1990, Vol. 54: 39-65.Google Scholar
  39. Nunez, P.L. Neocortical Dynamics and Human EEG Rhythms. New York: Oxford University Press, 1995.Google Scholar
  40. Nunez, P.L. Toward a quantitative description of large scale neocortical dynamic function and EEG. Behavioral and Brain Sciences, target article, 2000, 23: 371-398.Google Scholar
  41. Nunez, P.L. Neocortical dynamic theory should be as simple as possible, but not simpler. Behavioral and Brain Sciences, response to commentary on target article by 18 neuroscientists, 2000, 23: 415-437.Google Scholar
  42. Nunez, P.L., Silberstein, R.B., Cadusch, P.J., Wijesinghe, R.A., Westdorp, A.F. and Srinivasan, R. A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroenceph. clin. Neurophysiol., 1994, 90: 40-57.Google Scholar
  43. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B. and Cadusch, P.J. EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroenceph. clin. Neurophysiol., 1997, 103: 499-515.Google Scholar
  44. Nunez, P.L., Silberstein, R.B., Shi, Z., Carpenter, M.R., Srinivasan, R., Tucker, D.M., Doran, S.M., Cadusch, P.J. and Wijesinghe, R.S. EEG coherency II: Experimental comparisons of multiple measures. Clinical Neurophysiol., 1999, 110: 469-486.Google Scholar
  45. Olson, D.M., Chugani, H.T., Shewmon, D.A., Plelps, M.E. and Peacock, W.J. Electrocorticographic confirmation of focal positron emission tomography abnormalities in children with epilepsy. Epilepsia, 1990, 31: 731-739.Google Scholar
  46. Pascual-Marqui, R.D., Michel, C.M. and Lehmann, D. Low resolution electromagnetic topography: a new method for localizing electrical activity in the brain. International Journal Psychophysiology, 1995, 18: 49-65.Google Scholar
  47. Penfield, W. and Jasper, H.D. Epilepsy and the Functional Anatomy of the Human Brain. London: Little, Brown and Co, 1954.Google Scholar
  48. Perrin, F., Pernier, J., Bertrand, O. and Echallier, J.F. Spherical splines for scalp potential and current density mapping. Electroenceph. clin. Neurophysiol., 1989, 72: 184-187.Google Scholar
  49. Petsche, H., Pockberger, H. and Rappelsberger, P. On the search for sources of the electroencephalogram. Neuroscience, 1984, 11: 1-27.Google Scholar
  50. Plonsey, R. Bioelectric Phenomena. New York: McGraw-Hill, 1969.Google Scholar
  51. Rosen, B.R., Buckner, R.L. and Dale, A.M. Event-related functional MRI: Past, present and future. Proceedings National Academy of Sciences USA, 1998, 95: 773-780.Google Scholar
  52. Thatcher, R. and John, E. Functional Neuroscience. Vol. 1. Foundations of Cognitive Processes. Hillsdale, New Jersey: Erlbaum, 1977.Google Scholar
  53. Scherg, M. and von Cramon, D. Two bilateral sources of late AEP as identified by a spatiotemporal diploe model. Electroenceph. clin. Neurophysiol., 1985, 62: 32-44.Google Scholar
  54. Scherg, M., Bast, T. and Berg, P. Multiple source analysis of interictal spikes: goals requirements, and clinical value. Journal of Clinical Neurophysiology, 1999, 16: 214-224.Google Scholar
  55. Schwan, H.P. and Kay, C.F. Capacitive properties of body tissues. Circulation Research, 1957, 5: 439-443.Google Scholar
  56. Silberstein, R.B. Steady-state visually evoked potentials, brain resonances, and cognitive processes. In: P.L. Nunez (Author), Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, 1995a: 272-303.Google Scholar
  57. Silberstein, R.B. Neuromodulation of neocortical dynamics. In: P.L. Nunez (Author), Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, 1995b: 591-627.Google Scholar
  58. Silberstein, R.B. The steady state visually evoked potential, neocortical dynamics and cognitive function. Brain Topography Today. In: Y. Koga, K. Nagata and H. Hirata (Eds.), Amsterdam: Elsevier Science, 1997: 34-38.Google Scholar
  59. Silberstein, R.B., Schier, M.A., Pipingas, A., Ciorciari, J., Wood, S.R. and Simpson, D.G. Steady-state visually evoked potentials associated with a visual vigilance task. Brain Topography, 1990, 3: 337-347.Google Scholar
  60. Srinivasan, R., Nunez, P.L., Tucker, D.M., Silberstein, R.B. and Cadusch, P.J. Spatial sampling and filtering of EEG with spline-Laplacians to estimate cortical potentials, Brain Topography, 1996, 8: 355-366.Google Scholar
  61. Srinivasan, R., Nunez, P.L. and Silberstein, R.B. Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed. Eng., 1998, 45: 814-826.Google Scholar
  62. Szentagothai, J. The neural network of the cerebral cortex: A functional interpretation. Proceedings of the Royal Society of London, 1978, B201: 219-248.Google Scholar
  63. Van Bogaert, P., Wikler, D., Damhaut, P., Szliwowski, H.B. and Goldman, S. Cerebral glucose metabolism and centrotemporal spikes. Eplilepsy Research, 1998, 29: 123-127.Google Scholar
  64. Van Burik, M.J. Physical Aspects of EEG, Proefschrift Universiteit Twente, Enschede, the Netherlands, 1999.Google Scholar
  65. Wikswo, J.P. and Roth, B.J. Magnetic determination of the spatial extent of a single cortical current source: A theoretical analysis. Electroencephalography and Clinical Neurophysiology, 1988, 69: 266-276.Google Scholar
  66. Wilson, F.A., O'Scalaidhe, S.P. and Goldman-Rakic, P.S. Functional synergism between putative gamma-aminobutyrate containing neurons and pyramidal neurons in prefrontal cortex, Proceedings National Academy of Sciences USA, 1994, 26: 4009-4013.Google Scholar
  67. Yan, Y., Nunez, P.L. and Hart, R.T. Finite element model of the human head: scalp potentials due to dipole sources. Medical and Biological Engineering and Computing, 1991, 29: 475-481.Google Scholar

Copyright information

© Human Sciences Press, Inc. 2000

Authors and Affiliations

  • Paul L. Nunez
    • 1
    • 2
  • Richard B. Silberstein
    • 1
    • 3
    • 2
  1. 1.The Brain Sciences Institute,Melbourne,Australia
  2. 2.Brain Physics Group, Dept. of Biomedical Engineering,Tulane University,New Orleans,USA
  3. 3.Dept. of Biophysical Sciences and Electrical Engineering,Swinburne University of Technology,Melbourne,Australia

Personalised recommendations