Advertisement

International Journal of Theoretical Physics

, Volume 38, Issue 12, pp 3209–3220 | Cite as

Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras

  • Zdenka Riecanova
Article

Abstract

The relation between generalized effect algebrasand D-algebras and their subalgebras are discussed. Forgeneralized effect algebras the notion of centralelements is introduced and some of their properties are shown.

Keywords

Field Theory Elementary Particle Quantum Field Theory Generalize Effect Central Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Beran, L., Orthomodular Lattices.Algebraic Approach, Academia, Prague (1984).Google Scholar
  2. Dvurečenskij, A., Tensor product of difference posets or effect algebras, Int.J.Theor.Phys. 34 (1995), 1337–1348.Google Scholar
  3. Dvurečenskij, A., and Pulmannová, S., Difference posets, effects and quantum measurements, Int.J.Theor.Phys. 33 (1994a), 819–850.Google Scholar
  4. Dvurečenskij, A., and Pulmannová S., Tensor products of D-posets and D-test spaces, Rep.Math.Phys. 34 (1994b), 251–275.Google Scholar
  5. Foulis, D. J., and Bennett, M. K., Effect algebras and unsharp quantum logics, Found.Phys. 24 (1994), 1331–1352.Google Scholar
  6. Giuntini, R., Quantum MV-algebras, Studia Logica 56 (1996), 393–417.Google Scholar
  7. Giuntini, R., and Greuling, H., Toward a formal language for unsharp properties, Found.Phys. 20 (1989), 931–945.Google Scholar
  8. Greechie, R. J., Foulis, D., and Pulmannová, S., The center of an effect algebra, Order 12 (1995), 91–106.Google Scholar
  9. Gudder, S. P., D-algebras, Found.Phys. 26 (1994), 813–822.Google Scholar
  10. Hedlíková, J., and Pulmannová, S., Generalized difference posets and orthoalgebras, Acta Math.Univ.Comenianae LXV, 2 (1996), 247–279.Google Scholar
  11. Kalmbach, G., Orthomodular Lattices, Academic Press, London (1983).Google Scholar
  12. Kalmbach, G., and Riecanová, Z., An axiomatization for abelian relative inverses, Demonstratio Math. 27 (1994), 769–78 0.Google Scholar
  13. Kôpka, F., D-posets of fuzzy sets, Tatra Mt.Math.Publ. 1 (1992), 83–87.Google Scholar
  14. Kôpka, F., and Chovanec, F., D-posets, Math.Slovaca 44 (1994), 21–34.Google Scholar
  15. Pták, P., and Pulmannová, S., Orthomodular Structures as Quantum Logics, Kluwer, Dor-drecht (1991).Google Scholar
  16. Riecan, B., and Neubrunn, T., Integral, Measure and Ordering, Kluwer, Dordrecht (1997).Google Scholar
  17. Riecanová, Z., and Brsel, D., Contraexamples in difference posets and orthoalgebras, Int.J.Theor.Phys. 23 (1994), 133–141.Google Scholar
  18. Varadarajan, V. S., Geometry of Quantum Theory, Vol. 1, Van Nostrand (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Zdenka Riecanova

There are no affiliations available

Personalised recommendations