Digestive Diseases and Sciences

, Volume 43, Issue 10, pp 2284–2290 | Cite as

Glucagon-like Peptide-1 Retards Gastric Emptying and Small Bowel Transit in the Rat (Effect Mediated Through Central or Enteric Nervous Mechanisms)

  • Tesfaye Tolessa
  • Mark Gutniak
  • Jens Juul Holst
  • Suad Efendic
  • Per M. Hellstrom


This study investigated effects of glucagon-likepeptide-1(7-36)amide (GLP-1) on gastric emptying, smallintestinal transit, and contractility of smooth musclestrips in rats. GLP-1 at doses of 10 and 20 pmol/kg/min administered intravenouslydose-dependently retarded transit of the small intestine(P < 0.001), while only the higher dose of 20pmol/kg/min retarded gastric emptying (P < 0.01).GLP-1 at concentrations up to 10-4 M didnot affect the basal tone or contractility of thegastrointestinal muscle strips that were stimulated withelectric field stimulation or acetylcholine. Our resultsdemonstrate that small intestinal transit seems moresensitive than gastric emptying to inhibition by GLP-1at physiologic levels in plasma. Furthermore, thisinhibition appears to be mediated through centralmechanisms rather than through peripheral actions. Thus,GLP-1 is suggested to inhibit gastric emptying and smallintestinal transit through an indirect effect viacentral or enteric nervous mechanisms.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF: Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem 261:11880 - 11886, 1986PubMedGoogle Scholar
  2. 2.
    Ørskov C, Holst JJ, Knuhtsen S, Baldisse ra FGA, Poulsen SS, Nielsen OV: Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from the pig small intestine, but not pancre as. Endocrinology 119:1467 - 1475, 1986PubMedGoogle Scholar
  3. 3.
    Ørskov C, Holst JJ, Poulsen SS, Kirkegaard P: Pancre atic and intestinal processing of proglucagon in man. Diabe tologia 30:874 - 881, 1987Google Scholar
  4. 4.
    Holst JJ, Ørskov C, Nielsen OV, Schwartz TW: Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211:169 - 174, 1987PubMedGoogle Scholar
  5. 5.
    Holst JJ: Enteroglucagon. Adv Metab Dis 11:392 - 419, 1988Google Scholar
  6. 6.
    Kreymann B, Ghatei MA, Williams G, Bloom SR: Glucagonlike peptide-1 7-36: A physiological incretin in man. Lancet 2:1300 - 1303, 1987PubMedGoogle Scholar
  7. 7.
    Mojsov S, Weir GC, Habene r JF: Insulinotropin: Glucagonlike peptide-I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin rele ase in the perfused rat pancreas. J Clin Invest 79:616 - 619, 1987PubMedGoogle Scholar
  8. 8.
    Ø rskov C, Holst JJ, Nielsen OV: Effect of truncated glucagonlikepeptide-1 (proglucagon-(78 - 107) amide ) on endocrine secretion from pig pancreas, antrum, and non-antral stomach. Endocrinology 123:2009–2013, 1988PubMedGoogle Scholar
  9. 9.
    Wettergre n A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ: Truncated GLP-1 (proglucagon 78 - 107-mide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665± 673, 1993Google Scholar
  10. 10.
    Gutniak MK, Juntti-Berggre n L, Hellströ m PM, Guenifi A, Holst JJ, Efendic S: Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care 19:857 - 863, 1996PubMedGoogle Scholar
  11. 11.
    Ø rskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ: Tissue and plasma concentrations of amidated and glycine extended glucagon-like peptide-1 in humans. Diabetes 43:535 -539, 1994PubMedGoogle Scholar
  12. 12.
    Deacon CF, Johnsen AH, Holst JJ: Degradation of glucagonlike peptide-1 by human plasma in vitroyields an N-terminally truncated peptide that is a major endogenous me tabolite in vivo. J Clin Endocrinol Metab 80:952 - 957, 1995PubMedGoogle Scholar
  13. 13.
    Hjelm M, de Verdier C: A methodological study of the enzymatic determination of glucose in blood. Scand J Clin Lab Invest 15:415 - 428, 1963PubMedGoogle Scholar
  14. 14.
    Hellström PM, Nylander G, Rosell PM: Effects of neurotensin on the transit of gastrointe stinal contents in the rat. Acta Physiol Scand 115:239 - 243, 1982PubMedGoogle Scholar
  15. 15.
    Miller MS, Galligan JJ, Burks TF: Accurate measurement of intestinal transit in the rat. J Pharmacol Methods 6:211 - 217, 1981PubMedGoogle Scholar
  16. 16.
    Hellstrøm PM, Johansson C: Neuropeptide Y inhibits the migrating myoelectric complex and delays small intestinal transit in man. J Gastrointest Motil 1:35 - 41, 1989Google Scholar
  17. 17.
    Tolessa T, Gutniak M, Efendic S, Hellstr÷m PM: Inhibition of migrating myoelectric complex by glucagon-like peptide-1, but not glucagon, is partially mediated through nitric oxide and partially direct. Neurogastroenterol Motil 8:194A, 1996Google Scholar
  18. 18.
    Giralt M, Guo X, Vergara P: Glucagon-like-peptide-1 induces inhibitory actions in the gastrointestinal tract of the rat. Neurogastroenterol Motil 8:173A, 1996Google Scholar
  19. 19.
    Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE: Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase C. Endocrinology 133:57 - 62, 1993PubMedGoogle Scholar
  20. 20.
    Wettergre n A, Petersen H, Ørskov C, Christiansen J, Sheikh SP, Holst JJ: Glucagon-like peptide-1 (GLP-1) 7-36 amide and peptide YY from the L-cell in the ileal mucosa are potent inhibitors of vagally induced gastric acid in man. Scand JGastroenterol 29:501 - 505, 1994Google Scholar
  21. 21.
    Ørskov C, Wettergren A, Poulsen SDS, Holst JJ: Is the effect of glucagon-like peptide-1 on gastric emptying centrally mediated? Diabetologia 38:A39, 1995Google Scholar
  22. 22.
    Wei Y, Mojsov S: Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358:219 - 224, 1995PubMedGoogle Scholar
  23. 23.
    Ørskov C, Poulsen SS, Møller M, Holst JJ: Glucagon-like peptide-1 receptors in the subfornical organ and the area postrema are acce ssible to circulating glucagon-like peptide-1. Diabetes 45:832 - 835, 1996PubMedGoogle Scholar
  24. 24.
    d'Alessio DA, Fujimoto WY, Ensinck JW: Effects of glucagonlike peptide I-(7-36) on re lease of insulin, glucagon, and somatostatin by rat pancreatic islet cell monolayer cultures. Diabetes 38:1534 - 1538, 1989PubMedGoogle Scholar
  25. 25.
    Ishii M, Nakamura T, Kasai F, Onuma T, Baba T, Takebe K: Altered postprandial insulin requirement in IDDM patients with gastroparesis. Diabetes Care 17:901 - 903, 1994PubMedGoogle Scholar
  26. 26.
    Krarup T, Schwartz TW, Hilsted J, Madsbad S, Overlaege O, Sestoft L: Impaired response of pancreatic polypeptide to hypoglycaemia: an early sign of autonomic neuropathy in diabetics. Br Med J 2:1544 - 1546, 1979PubMedGoogle Scholar
  27. 27.
    Cryer PE: Hypoglycaemia-associated autonomic failure. InHypoglycaemia and Diabetes. BM Frier, M Fisher (eds). London, Arnold, 1993, pp 275 - 283Google Scholar
  28. 28.
    Horowitz M, Dent J: Disordered gastric emptying: me chanical basis, assessment and treatment. Bailliere's Clin Gastroente rol 5:371 - 407, 1991Google Scholar
  29. 29.
    Kreymann B, Ghatei MA, Schusdziarra V, Bloom SR, Classen M: Does the incretin effect exist for GIP or GLP-1 7-36 amide at physiological glucose concentrations in man? Digestion 46( suppl 1):59, 1990PubMedGoogle Scholar
  30. 30.
    Brown JC, Dryburgh JR, Ross SA, Dupré J: Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res 31:487 - 532, 1975PubMedGoogle Scholar
  31. 31.
    Schang JC, Kelly KA: Inhibition of canine interdigestive proximal gastric motility by cholecystokinin octapeptide. Am J Physiol 240:G217 - G220, 1981PubMedGoogle Scholar
  32. 32.
    Szecowka J, Lins PE, Efendic S: Effects of cholecystokinin, gastric inhibitory polypeptide, and secre tin on insulin and glucagon secretion in rats. Endocrinology 110:1268 - 1272, 1982PubMedGoogle Scholar
  33. 33.
    Rushakoff RJ, Goldfine ID, Carter JD, Liddle RA: Physiological concentrations of cholecystokinin stimulate amino acid release in humans. J Clin Endocrinol Metab 65:395 - 401, 1987PubMedGoogle Scholar
  34. 34.
    Bueno L, Ruckebusch Y: Insulin and jejunal electrical activity in dogs and sheep. Am J Physiol 230:G1538 - G1544, 1977Google Scholar
  35. 35.
    Shima K, Hirota M, Ohboshi C: Effect of glucagon-like peptide-1 on insulin secretion. Regul Pept 22:245 - 252, 1988CrossRefPubMedGoogle Scholar
  36. 36.
    Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S: Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes 38:902-905, 1989PubMedGoogle Scholar
  37. 37.
    Gefe l D, Hendrick GK, Mojsov S, Habener JF, Weir GC: Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 39, 59-monophosphate formation. Endocrinology 126:2164 - 2168, 1990PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Tesfaye Tolessa
  • Mark Gutniak
  • Jens Juul Holst
  • Suad Efendic
  • Per M. Hellstrom

There are no affiliations available

Personalised recommendations