Advertisement

International Journal of Theoretical Physics

, Volume 38, Issue 12, pp 3179–3187 | Cite as

Convex Structures and Effect Algebras

  • Stanley Gudder
Article

Abstract

Effect algebras have important applications inthe foundations of quantum mechanics and in fuzzyprobability theory. An effect algebra that possesses aconvex structure is called a convex effect algebra. Our main result shows that any convex effectalgebra admits a representation as a generating initialinterval of an ordered linear space. This result isanalogous to a classical representation theorem for convex structures due to M. H. Stone. We alsogive a relationship between a convex effect algebra anda statistical model called a convex effect-statespace.

Keywords

Field Theory Statistical Model Elementary Particle Quantum Field Theory Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. G. Beltrametti and S. Bugajski, A classical extension of quantum mechanics, J.Phys.A: Math.Gen. 28, 3329–3343 (1995).Google Scholar
  2. 2.
    E. G. Beltrametti and S. Bugajski, Quantum observables in classical frameworks, Int.J.Theor.Phys. 34, 1221–1229 (1995).Google Scholar
  3. 3.
    E. G. Beltrametti and S. Bugajski, Effect algebras and statistical physical theories, to appear.Google Scholar
  4. 4.
    S. Bugajski, Fundamentals of fuzzy probability theory, Int.J.Theor.Phys. 35, 2229–2244 (1996).Google Scholar
  5. 5.
    S. Bugajski, K.-E. Hellwig, and W. Stulpe, On fuzzy random variables and statistical maps, Rep.Math.Phys., to appear.Google Scholar
  6. 6.
    P. Busch, M. Grabowski, and P. Lahti, Operational Quantum Physics, Springer-Verlag, Berlin, 1995.Google Scholar
  7. 7.
    P. Busch, P. Lahti, and P. Mittlestaedt, The Quantum Theory of Measurement, Springer-Verlag, Berlin, 1991.Google Scholar
  8. 8.
    G. Cattaneo and G. Nisticò, Complete effect-preparation structures: Attempt of a unification of two different approaches to axiomatic quantum mechanics, Nuovo Cimento 90B, 161–175 (1985).Google Scholar
  9. 9.
    E. B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976.Google Scholar
  10. 10.
    A. Dvurečenskij, Tensor products of difference posets, Trans.Amer.Math.Soc. 147, 1043–1057 (1995).Google Scholar
  11. 11.
    A. Dvurečenskij and S. Pulmannová, Difference posets, effects, and quantum measurements, Int.J.Theor.Phys. 33, 819–850 (1994).Google Scholar
  12. 12.
    R. Evans, The Perception of Color, Wiley, New York, 1974.Google Scholar
  13. 13.
    D. Foulis and M. K. Bennett, Effect algebras and unsharp quantum logics, Found.Phys. 24, 1331–1352 (1994).Google Scholar
  14. 14.
    D. Foulis and M. K. Bennett, Interval algebras and unsharp quantum logics, to appear.Google Scholar
  15. 15.
    R. Giuntini and H. Greuling, Toward a formal language for unsharp properties, Found.Phys. 19, 931–945 (1989).Google Scholar
  16. 16.
    S. Gudder, Convexity and mixtures, SIAM Review 19, 221–240 (1977).Google Scholar
  17. 17.
    S. Gudder, Convex structures and operational quantum mechanics, Comm.Math.Phys. 29, 249–264 (1973).Google Scholar
  18. 18.
    S. Gudder, D-Algebras, Found.Phys. 26, 813–822 (1996).Google Scholar
  19. 19.
    S. Gudder, Fuzzy probability theory, Demonstratio Math., to appear.Google Scholar
  20. 20.
    S. Gudder and S. Pulmannová, Representation theorem for convex effect algebras, to appear.Google Scholar
  21. 21.
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.Google Scholar
  22. 22.
    F. Kôpka, D-posets and fuzzy sets, Tatra Mountains Math.Publ. 1, 83–87 (1992).Google Scholar
  23. 23.
    F. Kôpka and F. Chovanec, D-posets, Math.Slovaca 44, 21–34 (1994).Google Scholar
  24. 24.
    K. Kraus, States, Effects, and Operations, Springer-Verlag, Berlin, 1983.Google Scholar
  25. 25.
    G. Ludwig, Foundations of Quantum Mechanics, Springer-Verlag, Berlin, 1983.Google Scholar
  26. 26.
    M. H. Stone, Postulates for the barycentric calculus, Ann.Math. 29, 25–30 (1949).Google Scholar
  27. 27.
    R. M. Thrall, C. H. Coombs, and R. L. Davis, Decisions, Processes, Wiley, New York, 1954.Google Scholar
  28. 28.
    J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Stanley Gudder

There are no affiliations available

Personalised recommendations