International Journal of Theoretical Physics

, Volume 38, Issue 9, pp 2333–2348 | Cite as

Quantum Foam and de Sitter-Like Universe

  • P. A. Zizzi


We perform a foliation of a four-dimensionalRiemannian space-time with respect to a discrete timewhich is an integer multiple of the Planck time. We findthat the quantum fluctuations of the metric have a discrete energy spectrum. The metric field isexpanded in stationary eigenstates, and this leads tothe description of a de Sitter-like universe. At thePlanck scale the model describes a Planckian Euclidean black hole.


Foam Black Hole Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Balbinot and E. Poisson, Phys. Rev. D 41 (1990) 395.Google Scholar
  2. 2.
    S. Chakraborty, Mod. Phys. Lett. A 7 (1992) 2463.Google Scholar
  3. 3.
    P. A. M. Dirac, Nature 139 (1937) 323.Google Scholar
  4. 4.
    A. S. Eddington, Fundamental Theory, Cambridge University Press, Cambridge (1928).Google Scholar
  5. 5.
    V. P. Frolov and G. A. Vilkovinsky, Phys. Lett. B 106 (1981) 307.Google Scholar
  6. 6.
    V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Phys. Lett. B 216 (1989) 272.Google Scholar
  7. 7.
    G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15 (1997) 2752.Google Scholar
  8. 8.
    J. B. Hartle, Phys. Rev. D 51 (1995)Google Scholar
  9. 9.
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 28 (1983) 2960.Google Scholar
  10. 10.
    S. W. Hawking, Commun. Math. Phys. 87 (1982) 397.Google Scholar
  11. 11.
    S. W. Hawking and R. Penrose, The Nature of Space and Time, Princeton University Press, Princeton, New Jersey (1985).Google Scholar
  12. 12.
    S. W. Hawking, Nucl. Phys. B 144 (1978) 349.Google Scholar
  13. 13.
    S. W. Hawking, Commun. Math. Phys. 43 (1975) 199.Google Scholar
  14. 14.
    S. W. Hawking, Phys. Rev. D 13 (1976) 191.Google Scholar
  15. 15.
    F. Mellor and I. Moss, Phys. Rev. D 41 (1990) 40.Google Scholar
  16. 16.
    R. Penrose, In Quantum Gravity II, C. J. Isham, R. Penrose, and D. W. Sciama, eds., Oxford University Press, Oxford (1981), p. 129.Google Scholar
  17. 17.
    R. Penrose, In General Relativity: An Einstein Century Survey, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge (1979), p. 581.Google Scholar
  18. 18.
    A. Strominger, Phys. Rev. D 46 (1992) 4396.Google Scholar
  19. 19.
    K. S. Thorne (1973).Google Scholar
  20. 20.
    A. Vilenkin, Phys. Lett. 117 B (1982) 25.Google Scholar
  21. 21.
    J. A. Wheeler, Geometrodynamics, Academic Press, New York (1962).Google Scholar
  22. 22.
    J. A. Wheeler, C. W. Misner, and K. S. Thorne, Gravitation, Freeman, San Francisco (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • P. A. Zizzi

There are no affiliations available

Personalised recommendations