International Journal of Theoretical Physics

, Volume 38, Issue 4, pp 1299–1314 | Cite as

Nonequilibrium Dynamics of Quantum Fields in Inflationary Cosmology

  • S. A. Ramsey

Abstract

We summarize a recent study (with B. L. Hu) ofthe nonequilibrium dynamics of an unbroken-symmetryinflaton field during postinflationary reheating, duringwhich the energy density contained in the expectation value of the inflaton field is rapidlytransferred to inhomogeneous quantum modes of theinflaton field. The coupled dynamics of the expectationvalue (mean field) of a scalar inflaton field with anunbroken global O(N) symmetry and its quantum varianceis studied using the leading-order, large-Napproximation in a spatially flatFriedmann–Robertson–Walker (FRW) backgroundspacetime. The initial conditions for the mean field, variance, and Hubbleparameter were chosen to be consistent with conditionsat the end of slow roll in chaotic inflation.Backreaction of the dynamics of the mean field on thespacetime is incorporated self-consistently using thesemiclassical Einstein equation. The coupled dynamicalequations for the mean field, variance, and scale factorare solved for various choices of the mean field amplitude at the end of the slow-roll period,in order to determine the effect of spacetime curvatureon “preheating,” the parametricresonance-induced, rapid transfer of energy from themean field to the inhomogeneous inflaton modes. Itis shown that cosmic expansion can dramatically effectthe efficiency of preheating in the particular modelstudied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    R. H. Brandenberger, Rev. Mod. Phys. 57, 1 (1985).Google Scholar
  2. [2]
    L. F. Abbott and S.-Y. Pi, Inflationary Cosmology, World Scientific, Singapore (1986).Google Scholar
  3. [3]
    G. Börner, The Early Universe: Facts and Fiction, Springer-Verlag, Berlin (1988).Google Scholar
  4. [4]
    E.W. Kolb and M. S. Turner, In The Early Universe, Addison-Wesley, Redwood, California (1990), Chap. 8.Google Scholar
  5. [5]
    A. D. Linde, Inflation and Quantum Cosmology, Academic Press, San Diego, California (1990).Google Scholar
  6. [6]
    R. H. Brandenberger, In Field Theoretical Methods in Fundamental Physics, C. Lee, ed., Mineumsa, Seoul (1997) [hep-ph/9701276].Google Scholar
  7. [7]
    A. D. Linde, Phys. Lett. B 162, 281 (1985).Google Scholar
  8. [8]
    T. Piran, Phys. Lett. B 181, 238 (1986).Google Scholar
  9. [9]
    I. Yi and E. T. Vishniac, Phys. Rev. D 47, 5280 (1993).Google Scholar
  10. [10]
    E. W. Kolb and M. S. Turner, Ann. Rev. Nucl. Part. Sci. 23, 645 (1983).Google Scholar
  11. [11]
    L. A. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994).Google Scholar
  12. [12]
    E. W. Kolb, A. Linde, and A. Riotto, Phys. Rev. Lett. 77, 4290 (1996).Google Scholar
  13. [13]
    M. Yoshimura, In ‘The Cosmological Constant and the Evolution of the Universe,’ Universal Academic Press, Tokyo (1996).Google Scholar
  14. [14]
    G. W. Anderson, A. Linde, and A. Riotto, Phys. Rev. Lett. 77, 3716 (1996).Google Scholar
  15. [15]
    E. W. Kolb, A. Riotto, and I. I. Tkachev, Phys. Lett. B 423, 348 (1998).Google Scholar
  16. [16]
    L. A. Kofman, In Relativistic Astrophysics: A Conference in Honor of Igor Novikov's 60th Birthday, B. Jones and D. Markovic, eds., Cambridge University Press, Cambridge (1996) [astro-ph/9605155].Google Scholar
  17. [17]
    I. I. Tkachev, Phys. Lett. B 357, 35 (1996).Google Scholar
  18. [18]
    S. Kasuya and M. Kawasaki, Phys. Rev. D 56, 7597 (1997).Google Scholar
  19. [19]
    D. Boyanovsky, H. J. de Vega, R. Holman, and J. F. J. Salgado, Phys. Rev. D 54, 7570 (1996).Google Scholar
  20. [20]
    D. Boyanovsky et al., Phys. Rev. D 51, 4419 (1995).Google Scholar
  21. [21]
    D. Boyanovsky et al., hep-ph/9505220. [22] D. Boyanovsky et al., In Proceedings of the School on String Gravity and Physics at the Planck Scale, N. Sánchez, ed., World Scientific, Singapore (1995) [hep-ph/9511361].Google Scholar
  22. [23]
    D. Boyanovsky et al., Phys. Rev. D 52, 6805 (1995).Google Scholar
  23. [24]
    D. Boyanovsky et al., hep-ph/9609527.Google Scholar
  24. [25]
    D. Boyanovsky et al., Phys. Rev. D 56, 1939 (1997).Google Scholar
  25. [26]
    L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. D 56, 3258 (1997).Google Scholar
  26. [27]
    S. A. Ramsey and B. L. Hu, Phys. Rev. D 56, 678 (1997).Google Scholar
  27. [28]
    P. B. Greene, L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. D 56, 6175 (1997).Google Scholar
  28. [29]
    Y. Shtanov, J. Traschen, and R. H. Brandenberger, Phys. Rev. D 51, 5438 (1995).Google Scholar
  29. [30]
    J. Schwinger, Phys. Rev. 82, 664 (1951).Google Scholar
  30. [31]
    B. S. DeWitt, Phys. Rep. Phys. Lett. 19C, 297 (1975).Google Scholar
  31. [32]
    L. Parker, In Proceedings of the NATO Advanced Study Institute on Gravitation: Recent Development, M. Levy and S. Deser, eds., Plenum Press New York (1979).Google Scholar
  32. [33]
    N. D. Birrell and P. C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge (1982).Google Scholar
  33. [34]
    J. Schwinger, J. Math. Phys. 2, 407 (1961).Google Scholar
  34. [35]
    P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1, 12 (1963).Google Scholar
  35. [36]
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018–1026 (1965)].Google Scholar
  36. [37]
    K. Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).Google Scholar
  37. [38]
    B. S. DeWitt, In Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds., Clarendon Press, Oxford (1986).Google Scholar
  38. [39]
    R. D. Jordan, Phys. Rev. D 33, 444 (1986).Google Scholar
  39. [40]
    E. Calzetta and B. L. Hu, Phys. Rev. D 35, 495 (1987).Google Scholar
  40. [41]
    A. O. Barvinsky and G. A. Vilkovisky, Nucl. Phys. B 282, 163 (1987).Google Scholar
  41. [42]
    L. F. Abbott, E. Farhi, and M. B. Wise, Phys. Lett. B 117, 29 (1982).Google Scholar
  42. [43]
    A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982).Google Scholar
  43. [44]
    A. D. Dolgov and A. D. Linde, Phys. Lett. B 116, 329 (1982).Google Scholar
  44. [45]
    A. D. Dolgov and D. P. Kirilova, Yad. Fiz. 51, 273 (1990) [Sov. J. Nucl. Phys. 51, 172–177 (1990)].Google Scholar
  45. [46]
    A. Dolgov and K. Freese, Phys. Rev. D 51, 2693 (1995).Google Scholar
  46. [47]
    R. Allahverdi and B. A. Campbell, Phys. Lett. B 395, 169 (1997).Google Scholar
  47. [48]
    L. Parker, Phys, Rev. 183, 1057 (1969).Google Scholar
  48. [49]
    R. U. Sexl and H. K. Urbantke, Phys. Rev. 179, 1247 (1969).Google Scholar
  49. [50]
    Y. B. Zel' dovich, Zh. Eksp. Teor. Fiz. Pis. Red. 12, 443 (1970) [JETP Lett. 12, 307–311 (1971)].Google Scholar
  50. [51]
    Y. B. Zel' dovich and A. A. Starobinsky, Zh. Eksp. Teor. Fiz. 61, 2161 (1971) [Sov. Phys. JETP 34, 1159–1166 (1972)].Google Scholar
  51. [52]
    B. L. Hu, Phys. Rev. D 9, 3263 (1974).Google Scholar
  52. [53]
    E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).Google Scholar
  53. [54]
    E. Calzetta and B. L. Hu, Phys. Rev. D 40, 656 (1989).Google Scholar
  54. [55]
    J. P. Paz, Phys. Rev. D 42, 529 (1990).Google Scholar
  55. [56]
    A. Stylianopoulos, Ph.D. thesis, University of Maryland, College Park, Maryland (1991).Google Scholar
  56. [57]
    S. A. Ramsey, B. L. Hu, and A. M. Stylianopoulos, Phys. Rev. D 57, 6003 (1998).Google Scholar
  57. [58]
    J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D 55, 7815 (1997).Google Scholar
  58. [59]
    D. I. Kaiser, Phys. Rev. D 53, 1776 (1996).Google Scholar
  59. [60]
    F. D. Mazzitelli, J. P. Paz, and C. El Hasi, Phys. Rev. D 40, 955 (1989).Google Scholar
  60. [61]
    S. Y. Khlebnikov and I. I. Tkachev, Phys. Lett. B 390, 80 (1997).Google Scholar
  61. [62]
    I. Zlatev, G. Huey, and P. J. Steinhardt, Phys. Rev. D 57, 2152 (1998).Google Scholar
  62. [63]
    S. A. Ramsey and B. L. Hu, Phys. Rev. D 56, 661 (1997).Google Scholar
  63. [64]
    J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 (1974).Google Scholar
  64. [65]
    F. Cooper et al., Phys. Rev. D 50, 2848 (1994).Google Scholar
  65. [66]
    F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev. D 55, 6471 (1997).Google Scholar
  66. [67]
    D. T. Son, Phys. Rev. D 54, 3745 (1996).Google Scholar
  67. [68]
    D. Boyanovsky and H. J. de Vega, Phys. Rev. D 47, 2343 (1993).Google Scholar
  68. [69]
    D. Boyanovsky, H. J. de Vega, and R. Holman, Phys. Rev. D 49, 2769 (1994).Google Scholar
  69. [70]
    B. L. Hu, J. P. Paz, and Y. Zhang, In The Origin of Structure in the Universe, E. Gunzig and P. Nardone, eds., Kluwer, Dordrecht (1993), p. 227 [gr-qc/9512049].Google Scholar
  70. [71]
    A. D. Linde, Phys. Lett. B 129, 177 (1983).Google Scholar
  71. [72]
    B. L. Hu, In Recent Developments in General Relativity, R. Ruffini, ed., North-Holland, Amsterdam (1986).Google Scholar
  72. [73]
    B. L. Hu and D. J. O' Connor, Phys. Rev. Lett. 56, 1613 (1986).Google Scholar
  73. [74]
    B. L. Hu, In Inner Space/Outer Space: The Interface Between Cosmology and Particle Physics, E.W. Kolb et al., eds., University of Chicago Press, Chicago (1986), pp. 479–488.Google Scholar
  74. [75]
    S. A. Ramsey, Ph.D. thesis, University of Maryland, College Park, Maryland (1997).Google Scholar
  75. [76]
    J. B. Hartle and G. T. Horowitz, Phys. Rev. D 24, 257 (1981).Google Scholar
  76. [77]
    B. L. Hu and D. J. O' Connor, Phys. Rev. D 36, 1701 (1987).Google Scholar
  77. [78]
    L. Parker and S. D. Fulling, Phys. Rev. D 9, 341 (1974).Google Scholar
  78. [79]
    S. A. Fulling, L. Parker, and B. L. Hu, Phys. Rev. D 10, 3905 (1974); 11, 1714(E) (1975).Google Scholar
  79. [80]
    S. A. Fulling and L. Parker, Ann. Phys. (N.Y.) 87, 176 (1974).Google Scholar
  80. [81]
    T. S. Bunch and P. C. W. Davies, Proc. R. Soc. Lond. A 360, 117 (1978).Google Scholar
  81. [82]
    T. S. Bunch, J. Phys. A 13, 1297 (1980).Google Scholar
  82. [83]
    A. Ringwald, Ann. Phys. (N.Y.) 177, 129 (1987).Google Scholar
  83. [84]
    S. A. Fulling, In Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, Cambridge, (1989), Chap. 7.Google Scholar
  84. [85]
    J. Garcia-Bellido and A. Linde, Phys. Rev. D 52, 6730 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • S. A. Ramsey

There are no affiliations available

Personalised recommendations