On the Geometry of Generalized Robertson-Walker Spacetimes: Geodesics
Article
- 188 Downloads
- 43 Citations
Abstract
The geometry and, especially, the geodesics of a class of spacetimes generalizing Robertson-Walker ones (without any assumption on the fiber) is studied, under a global point of view. Our study covers geodesic connectedness, geodesic completeness and stability of completeness.
GENERALIZED ROBERTSON-WALKER SPACETIME GEODESIC CONNECTEDNESS GEODESIC COMPLETENESS STABILITY OF COMPLETENESS
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.Alías, L. J., Estudillo, F. J. M., Romero, A. (1996). “On the Gaussian curvature of maximal surfaces in n-dimensional generalized Robertson-Walker spacetimes,” Class. Quantum Grav. 13, 3211.Google Scholar
- 2.Alías, L. J., Romero, A., Sánchez, M. (1995). “Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson-Walker spacetimes,” Gen. Rel. Grav. 27, 71.Google Scholar
- 3.Alías, L. J., Romero, A., M. Sánchez, M. (1997). “Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems,” Tohôku Math. J. 49, 337.Google Scholar
- 4.Avez, A. (1962). “Formule the Gauss-Bonnet-Chern en métrique de signature quelconque,” C. R. Acad. Sci. 255, 2049.Google Scholar
- 5.Bates, L. (1998). “You Can 't Get There From Here,” J. Diff. Geom. and Applications, to appear.Google Scholar
- 6.Bedran, M. L., Lesche, B. (1986).“An example of affine collineation in the Robertson-Walker metric,” J. Math. Phys. 27, 2360.Google Scholar
- 7.Beem, J. K., Ehrlich, P. E. (1987). “Geodesic completeness and stability,” Math. Proc. Camb. Phil. Soc. 102, 319.Google Scholar
- 8.Beem, J. K., Ehrlich, P. E., Easley, K. L. (1996). Global Lorentzian Geometry (2nd. ed., Pure and Applied Mathematics, vol. 202, Marcel Dekker, New York).Google Scholar
- 9.Beem, J. K., Parker:, P. E. (1989). “Pseudoconvexity and geodesic connectedness,” Ann. Mat. Pure Appl. 155, 137.Google Scholar
- 10.Benci, V., Fortunato, D., Giannoni, F. (1991). “On the existence of multiple geodesics in static space-times,” Ann. Inst. Henri Poincaré 8, 79.Google Scholar
- 11.Benci, V., Fortunato, D., Masiello, A. (1994). “On the geodesic connectedeness of Lorentzian manifolds,” Math. Z. 217, 73.Google Scholar
- 12.Carot, J., da Costa, J. (1993). “On the geometry of warped spacetimes,” Class. Quantum Grav. 10, 461.Google Scholar
- 13.Carot, J., Nuñez, L. A., Percoco, U. (1997). “Ricci Collineations for Type B Warped Spacetimes,” Gen. Rel. Grav. 29, 1223.Google Scholar
- 14.Daftardar, V., Dadhich, N. (1994). “Gradient conformal Killing vectors and exact solutions,” Gen. Rel. Grav. 26, 859.Google Scholar
- 15.Deszcz, R., Verstraelen, L., Vrancken, L. (1991). “The symmetry of warped product space-times,” Gen. Rel. Grav. 23, 671.Google Scholar
- 16.Earley, D., Isenberg, J., Marsden, J., Moncrief, V. (1986). “Homothetic and conformal symmetries of solutions to Einstein's equations,” Commun. Math. Phys. 106, 137.Google Scholar
- 17.Ehlers, J., Geren, P., Sachs, J. K. (1968). “Isotropic solutions of the Einstein-Liouville equations,” J. Math. Phys. 9, 1344.Google Scholar
- 18.Ferrando, J. J., Morales, J. A., Portilla, M. (1992). “Inhomogeneous space-times admitting isotropic radiation: vorticity-free case,” Phys. Rev. D46, 578.Google Scholar
- 19.García-Río, E., Kupeli, D. N. (1996). “Singularity versus splitting theorems for stably causal spacetimes,” Annals Glob. Anal. Geom. 14, 301.Google Scholar
- 20.Geroch, R. (1970). “Domain of dependence,” J. Math. Phys. 11, 437.Google Scholar
- 21.Giannoni, F., Massiel lo, A. (1995). “Geodesics on product Lorentzian manifolds,” Ann. Inst. Henri Poin caré 8, 27.-60.Google Scholar
- 22.Haddow, B. M., Carot, J. (1996). “Energy-momentum types of warped spacetimes,” Class. Quantum Grav. 13, 289.Google Scholar
- 23.Masiello, A. (1994). Variational methods in Lorentzian Geometry (Pitman Research Notes in Mathematics Series, 309, Longman Scientific and Technical, Harlow, Essex).Google Scholar
- 24.Nomizu, K., Ozeki, H. (1961). “The existence of complete Riemannian metrics,” Proc. Amer. Math. Soc. 12, 889.Google Scholar
- 25.O'Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity (Pure and Applied Ser. vol 103, Academic Press, New York).Google Scholar
- 26.Ponge, R., Reckziegel, H. (1993). “Twisted products in pseudo-Riemannian geometry,” Geom. Dedicata 48, 15.Google Scholar
- 27.Romero, A., Sánchez, M. (1994). “On the completeness of certain families of semi-Riemannian manifolds,” Geom. Dedicata 53, 103.Google Scholar
- 28.Romero, A., Sánchez, M. (1994). “New properties and examples of incomplete Lorentzian tori,” J. Math. Phys. 35, 1992.Google Scholar
- 29.Romero, A., Sánchez, M. (1994). “Geodesic completeness and conformal Lorentzian moduli space on the torus,” In Proc. III Fall Workshop Differential Geometry and Its Applications, Anales de Fısica, Monografıas 2 189.Google Scholar
- 30.Romero, A., Sánchez, M. (1993). “On the completeness of geodesics obtained as a limit,” J. Math. Phys. 34, 3768.Google Scholar
- 31.Romero, A., Sánchez, M. (1998). “Bochner's technique on Lorentzian manifolds and infinitesimal conformal symmetries,” Pac. J. Math., to appear.Google Scholar
- 32.Sachs, R., Wu, H. (1977). General Relativity for Mathematicians (Graduate Texts in Mathematics 48, Springer, New York).Google Scholar
- 33.Sánchez, M. (1997). “Geodesic connectedness in Generalized Reissner-Nordström type Lorentz manifolds,” Gen. Rel. Grav. 29, 1023.Google Scholar
- 34.Sánchez, M. (1997). “Structure of Lorentzian tori with a Killing vector field,” Trans. Amer. Math. Soc. 349, 1063.Google Scholar
- 35.Sánchez, M. (1997). “Some remarks on Causality Theory and Variational Methods in Lorentzian Manifolds,” Conf. Sem. Mat. Univ. Bari, 256.Google Scholar
- 36.Sánchez, M. (1997). “Timelike periodic trajectories in spatially compact Lorentzian manifolds.” Preprint.Google Scholar
- 37.Sánchez, M. (1997). “On the geometry of Generalized Robertson-Walker Spacetimes Curvature and Killing fields.” Preprint.Google Scholar
- 38.Schmidt, H.-J. (1996). “How should we measure spatial distances?” Gen. Rel. Grav. 28, 899.Google Scholar
- 39.Schmidt, H.-J. (1996). “Stability and Hamiltonian formulation of higher derivative theories” Phys. Rev. D54, 7906 (Erratum).Google Scholar
- 40.Seifert, H. J. (1967). “Global connectivity by time-like geodesics,” Zs. für Nature-for schung 22a, 1356.Google Scholar
- 41.Senovilla, J. M. M. (1998). “Singularity theorems and their consequences,” Gen. Rel. Grav. 30, 701.Google Scholar
Copyright information
© Plenum Publishing Corporation 1998