International Journal of Theoretical Physics

, Volume 38, Issue 1, pp 359–385 | Cite as

State Property Systems and Closure Spaces: A Study of Categorical Equivalence

  • Diederik Aerts
  • Eva Colebunders
  • Ann Van Der Voorde
  • Bart Van Steirteghem


We show that the natural mathematical structureto describe a physical entity by means of its states andits properties within the Geneva–Brussels approachis that of a state property system. We prove that the category of state property systems (andmorphisms) SP is equivalent to the category ofclosure spaces (and continuous maps) Cls. We showthe equivalence of the ‘state determinationaxiom’ for state property systems with the ‘T0separation axiom’ for closure spaces. We alsoprove that the category SP0 ofstate-determined state property systems is equivalent tothe category L0 of based completelattices. In this sense the equivalence of SP andCls generalizes the equivalence ofCls0 (T0 closure spaces)and L0 proven by Erne(1984).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, D. (1981). The one and the many, Doctoral Thesis, Brussels Free University.Google Scholar
  2. Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum mechanics, Found. Phys. 12, 1131.Google Scholar
  3. Aerts, D. (1983a). Classical theories and non classical theories as a special case of a more general theory, J. Math. Phys. 24, 2441.Google Scholar
  4. Aerts, D. (1983b). The description of one and many physical systems, in Foundations of Quantum Mechanics, C. Gruber, ed., A.V.C.P., Lausanne, p. 63.Google Scholar
  5. Aerts, D. (1984a). Construction of the tensor product for the lattices of properties of physical entities, J. Math. Phys. 25, 1434.Google Scholar
  6. Aerts, D. (1984b). The missing elements of reality in the description of quantum mechanics of the EPR paradox situation, Helv. Phys. Acta 57, 421.Google Scholar
  7. Aerts, D. (1985). The physical origin of the EPR paradox and how to violate Bell inequalities by macroscopic systems, in Symposium on the Foundations of Modern Physics, P. Mittelstaedt, and P. Lahti, eds., World Scientific, Singapore.Google Scholar
  8. Aerts, D. (1994). Quantum structures, separated physical entities and probability, Found. Phys. 24, 1227.Google Scholar
  9. Aerts, D. (1998). Foundations of quantum physics: A general realistic and operational approach, Int. J. Theor. Phys., this issue.Google Scholar
  10. Aerts, D., and Valckenborgh, F. (1998). Lattice extensions and the description of compound entities, FUND, Brussels Free University, Preprint.Google Scholar
  11. Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1997a). Quantum, classical and intermediate; a model on the Poincaré sphere, Tatra Mountains Math. Publ. 10, 225.Google Scholar
  12. Aerts, D., Coecke, B., Durt, T., and Valckenborgh, F. (1997b). Quantum, classical and intermediate; the vanishing vector space structure, Tatra Mountains Math. Publ. 10, 241.Google Scholar
  13. Borceux F. (1994). Handbook of Categorical Algebra I, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge.Google Scholar
  14. Cattaneo, G., and Nistico, G. (1991). Axiomatic foundations of quantum physics: Critiques and misunderstandings. Piron' s question-proposition system, Int. J. Theor. Phys. 30, 1293.Google Scholar
  15. Cattaneo, G., and Nistico, G. (1992). Physical content of preparation-qu estion structures and Brouwer-Zadeh lattices, Int. J. Theor. Phys. 31, 1873.Google Scholar
  16. Cattaneo, G., and Nistico, G. (1993). A model of Piron' s preparation-que stion structures in Ludwig' s selection structures, Int. J. Theor. Phys. 32, 407.Google Scholar
  17. Cattaneo G., dalla Pozza C., Garola C., and Nistico G. (1988). On the logical foundations of the Jauch-Piron approach to quantum physics, Int. J. Theor. Phys. 27, 1313.Google Scholar
  18. Daniel, W. (1982). On non-unitary evolution of quantum systems, Helv. Phys. Acta 55, 330.Google Scholar
  19. d' Emma, G. (1980). On quantization of the electromagnetic field, Helv. Phys. Acta 53, 535.Google Scholar
  20. Erné M. (1984). Lattice representations for categories of closure spaces, in Categorical Topology, Heldermann Verlag, Berlin, pp. 197–122.Google Scholar
  21. Foulis, D., and Randall, C. (1984). A note on the misunderstanding of Piron's axioms for quantum mechanics, Found. Phys. 14, 65.Google Scholar
  22. Foulis, D., Piron, C., and Randall, C. (1983). Realism, operationalism and quantum mechanics, Found. Phys. 13, 843.Google Scholar
  23. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., and Scott, D. S. (1980). A Compendium of Continuous Lattices, Springer-Verlag, Berlin.Google Scholar
  24. Giovannini, N., and Piron, C. (1979). On the group-theoretic al foundations of classical and quantum physics: Kinematics and state spaces, Helv. Phys. Acta 52, 518.Google Scholar
  25. Gisin, N. (1981). Spin relaxation and dissipative SchroÈ dinger like evolution equations, Helv. Phys. Acta 54, 457.Google Scholar
  26. Jauch, J. M., and Piron, C. (1965). Generalized localisability, Helv. Phys. Acta 38, 104.Google Scholar
  27. Ludwig, G., and Neumann, H. (1981). Connections between different approaches to the foundations of quantum mechanics, in Interpretation and Foundations of Quantum Mechanics, H. Neumann, ed., B. I. Wissenschafts-Verlag, Bibliographische s Institut, Mannheim.Google Scholar
  28. Moore, D. (1995). “Categories of Representations of Physical Systems”, Helv. Phys. Acta, 68, 658.Google Scholar
  29. Piron, C. (1964). Axiomatique quantique, Helv. Phys. Acta 37, 439.Google Scholar
  30. Piron, C. (1969). Les régles de superselection continues, Helv. Phys. Acta 43, 330.Google Scholar
  31. Piron, C. (1976). Foundations of Quantum Physics, Benjamin, Reading, Massachusetts.Google Scholar
  32. Piron, C. (1989). Recent developments in quantum mechanics, Helv. Phys. Acta 62, 82.Google Scholar
  33. Piron, C. (1990). Mécanique Quantique: Bases et Applications, Presses polytechniques et universitaires romandes, Lausanne, Switzerland.Google Scholar
  34. Randall, C., and Foulis, D. (1983). Properties and operational propositions in quantum mechanics, Found. Phys. 13, 843.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Diederik Aerts
  • Eva Colebunders
  • Ann Van Der Voorde
  • Bart Van Steirteghem

There are no affiliations available

Personalised recommendations