International Journal of Theoretical Physics

, Volume 37, Issue 2, pp 651–684 | Cite as

Quantum Neural Nets

  • Michail Zak
  • Colin P. Williams


The capacity of classical neurocomputers islimited by the number of classical degrees of freedom,which is roughly proportional to the size of thecomputer. By contrast, a hypothetical quantumneurocomputer can implement an exponentially larger number ofthe degrees of freedom within the same size. In thispaper an attempt is made to reconcile the linearreversible structure of quantum evolution with nonlinear irreversible dynamics for neuralnets.


Field Theory Elementary Particle Quantum Field Theory Quantum Evolution Classical Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, M. (1956). An Introduction to Stochastic Processes, Cambridge University Press, Cambridge.Google Scholar
  2. Deutsch, D. (1989). Proceedings of the Royal Society of London A, 425, 73.Google Scholar
  3. Feynman, R. (1982). International Journal of Theoretical Physics, 21(6/7).Google Scholar
  4. Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Reading, Massachusetts.Google Scholar
  5. Lloyd, S. (1993). A potentially realizable quantum computer, Science, 261, 1569-1571.Google Scholar
  6. Taub, J., and Wozniakowski, H. (1992). Breaking intractability, Scientific American, 46(August).Google Scholar
  7. Williams, C. P., and Clearwater, S. H. (1997). Explorations in Quantum Computing, TELOS/ Springer-Verlag.Google Scholar
  8. Zak, M. (1997). Dynamical simulations of probabilities, Chaos, Solitons, and Fractals, 8(5), 793-804.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Michail Zak
  • Colin P. Williams

There are no affiliations available

Personalised recommendations