International Journal of Theoretical Physics

, Volume 38, Issue 12, pp 3269–3281 | Cite as

On a Duality of Quantales Emerging from an Operational Resolution

  • Bob Coecke
  • Isar Stubbe
Article

Abstract

We introduce the notion of operationalresolution, i.e., an isotone map from a powerset to aposet that meets two additional conditions, whichgeneralizes the description of states as the atoms in aproperty lattice (Piron, 1976; Aerts, 1982) or as theunderlying set of a closure operator (Aerts, 1994;Moore, 1995). We study the structure preservation of therelated state transitions and show how the operational resolution constitutes an epimorphism betweentwo unitary quantales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aerts, D. (1982). Found.Phys. 12, 1131.Google Scholar
  2. Aerts, D. (1984). J.Math.Phys. 25, 1434.Google Scholar
  3. Aerts, D. (1994). Found.Phys. 24, 1227.Google Scholar
  4. Amira, H., Coecke, B., and Stubbe, I. (1998). Helv.Phys.Acta 71, 554.Google Scholar
  5. Birkhoff, G. (1967). Lattice Theory, Am. Math. Soc., Providence, Rhode Island.Google Scholar
  6. Borceux, F. (1994). Handbook of Categorical Algebra I, Cambridge University Press, Cambridge.Google Scholar
  7. Coecke, B. (1998a). Found.Phys. 28, 1109.Google Scholar
  8. Coecke, B. (1998b). Found.Phys. 28, 1347.Google Scholar
  9. Coecke, B., and Stubbe, I. (1999). Found.Phys.Lett. 12, (29).Google Scholar
  10. Moore, D. J. (1995). Helv.Phys.Acta 68, 658.Google Scholar
  11. Moore, D. J. (1997). Int.J.Theor.Phys. 36, 2211.Google Scholar
  12. Moore, D. J. (1999). Stud.Hist.Phil.Mod.Phys., 30, (61).Google Scholar
  13. Mulvey, C. J. (1986). Rend.Circ.Math.Palermo 12, 99.Google Scholar
  14. Paseka, J. (1996). Simple quantales, in Proceedings of the 8th Prague Topology Symposium, P. Simon, ed., 314.Google Scholar
  15. Piron, C. (1976). Foundations of Quantum Physics, Benjamin, New York.Google Scholar
  16. Rosenthal, K. I. (1990). Quantales and Their Applications, Longman, London.Google Scholar
  17. Roman, L., and Zuazua, R. E. (1996). Theor.Appl.Cat. 2, 62.Google Scholar
  18. Valckenborgh, F. (1997). Tatra Mt.Math.Publ. 10, 75.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Bob Coecke
  • Isar Stubbe

There are no affiliations available

Personalised recommendations