Advertisement

International Journal of Theoretical Physics

, Volume 38, Issue 4, pp 1227–1252 | Cite as

Primordial Black Holes: Pair Creation, Lorentzian Condition, and Evaporation

  • Raphael Bousso
  • Stephen W. Hawking
Article

Abstract

The wave function of the universe is usuallytaken to be a functional of the threemetric on aspacelike section, Σ, which is measured. It issometimes better, however, to work in the conjugaterepresentation, where the wave function depends on a quantityrelated to the second fundamental form of Σ. Thismakes it possible to ensure that Σ is part of aLorentzian universe by requiring that the argument of the wave function be purely imaginary. Wedemonstrate the advantages of this formalism first inthe well-known examples of the nucleation of a de Sitteror a Nariai universe. We then use it to calculate the pair creation rate for submaximal blackholes in de Sitter space, which had been thought tovanish semiclassically. We also study the quantumevolution of asymptotically de Sitter black holes. Forblack holes whose size is comparable to that of thecosmological horizon, this process differs significantlyfrom the evaporation of asymptotically flat black holes.Our model includes the one-loop effective action in the s-wave and large-N approximation.Black holes of the maximal mass are in equilibrium.Unexpectedly, we find that nearly maximal quantumSchwarzschild–de Sitter black holes antievaporate.However, there is a different perturbative mode thatleads to evaporation. We show that this mode will alwaysbe excited when a pair of maximal cosmological blackholes nucleates.

Keywords

Evaporation Black Hole Wave Function Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).Google Scholar
  2. [2]
    P. Ginsparg and M. J. Perry, Nucl. Phys. B 222, 245 (1983).Google Scholar
  3. [3]
    R. Bousso and S. W. Hawking, Phys. Rev. D 52, 5659 (1995).Google Scholar
  4. [4]
    R. Bousso and S. W. Hawking, Phys. Rev. D 54, 6312 (1996).Google Scholar
  5. [5]
    D. Garfinkle, S. B. Giddings, and A. Strominger, Phys. Rev. D 49, 958 (1994).Google Scholar
  6. [6]
    F. Dowker, J. P. Gauntlett, S.B. Giddings, and G. T. Horowitz, Phys. Rev. D 50, 2662 (1994).Google Scholar
  7. [7]
    S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D 51, 4302 (1995).Google Scholar
  8. [8]
    S. W. Hawking and S. F. Ross, Phys. Rev. D 52, 5865 (1995).Google Scholar
  9. [9]
    R. B. Mann and S. F. Ross, Phys. Rev. D 52, 2254 (1995).Google Scholar
  10. [10]
    W.-Z. Chao, Int. J. Mod. Phys. D 6, 199 (1997).Google Scholar
  11. [11]
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1974).Google Scholar
  12. [12]
    C. G. Callan, S. B. Giddings, J. A. Harvey, and A. Strominger, Phys. Rev. D 45, 1005 (1992).Google Scholar
  13. [13]
    J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Lett. B 292, 13 (1992).Google Scholar
  14. [14]
    J. G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D 46, 3444 (1992).Google Scholar
  15. [15]
    R. Bousso and S. W. Hawking, Phys. Rev. D 56, 7788 (1997).Google Scholar
  16. [16]
    H. Nariai, Sci. Rep. Tohoku Univ. Ser. I 35, 62 (1951).Google Scholar
  17. [17]
    J. D. Hayward, Phys. Rev. D 52, 2239 (1995).Google Scholar
  18. [18]
    S. Nojiri and S. D. Odintsov, Mod. Phys. Lett. A 12, 2083 (1997).Google Scholar
  19. [19]
    R. Bousso, Phys. Rev. D 55, 3614 (1997).Google Scholar
  20. [20]
    R. Bousso, Proliferation of de Sitter space, submitted to Phys. Rev. D [hep-th/9805081 ].Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Raphael Bousso
  • Stephen W. Hawking

There are no affiliations available

Personalised recommendations