Skip to main content
Log in

Hypoxia-Induced Generation of Nitric Oxide Free Radicals in Cerebral Cortex of Newborn Guinea Pigs

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Moncada, S., Palmer, R. M. J., and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Parmacol. Rev. 43:109–134.

    Google Scholar 

  2. Schuman, E. M. and Madison, D. V. 1994. Nitric oxide and synaptic function. Ann Rev. Neurosci. 17:153–183.

    Google Scholar 

  3. Radi, R., Beckman, J. S., and Freeman, B. A. 1991. Peroxynitrite-induced membrane lipid oxidation, the cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  4. Nowicki, J. P., Duval, D., Poignet, H., and Scatton, B. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmacol. 204:339–340.

    Google Scholar 

  5. Rubbo, H., Radi, R., Trujillo, M., Telleri R., Kalyanraman, B., Barnes, S., Kerk, M., and Freeman, B. A. 1994. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J. Biol. Chem. 269:26066–260759.

    Google Scholar 

  6. Vidwans, A. S., Kim, S., Coffin, D. O., Wink, D. A., and Hewett, S. J. 1999. Analysis of the neuroprotective effect os of various nitric oxide donor compounds in murine cortical cell culture. J. Neurochem. 72:1843–1852.

    Google Scholar 

  7. Numagami, Y., Zubrow, A. B., Mishra, O. P., and Delivoria-Papadopoulos, M. 1997. Lipid free radical generation and brain cell membrane alteration following nitric oxide synthase inhibition during cerebral hypoxia in the newborn piglet. J. Neurochem. 69:1542–1547.

    Google Scholar 

  8. Bredt, D. S. and Snyder, S. H. 1989. Nitric oxide mediates glutamate linked enhancement of cGMP levels in cerebellum. Proc. Natl. Acad. Sci. USA 86:9030–9033.

    Google Scholar 

  9. Garthwaite, J., Garthwaite, G., Palmer, R. M., and Moncada, S. 1989. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 172:413–416.

    Google Scholar 

  10. Frandsen, A. and Schousboe, A. 1993. Excitatory amino acid mediated cytotoxicity and calcium homeostasis incultured neurons. J. Neurochem. 60:1202–1211.

    Google Scholar 

  11. Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl. J. Med. 330:613–622.

    Google Scholar 

  12. Mishra, O. P. and Delivoria-Papadopoulos, M. 1992. NMDA receptor modification of the fetal guinea pig brain during hypoxia. Neurochem. Res. 17:1211–1216.

    Google Scholar 

  13. Hoffman, D. J., DiGiacomo, J. E., Marro, P. J., Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Hypoxia-induced modification of the N-methyl-D-aspartate (NMDA) receptor in the brain of newborn piglets. Neurosci. Lett., 167:156–160.

    Google Scholar 

  14. Razdan, B., Kubin, J. A., Mishra, O. P., and Delivoria-Papadopoulos, M. 1996. Modification of the glycine (co-activator) binding site of the N-methyl-D-aspartate receptor in the guinea pig fetus brain during development following hypoxia. Brain Res. 733:15–20.

    Google Scholar 

  15. Fritz, K. Fritz, K. I., Mishra, O. P., and Delivoria-Papadopoulos, M. 1999. Mg++-modification of the NMDA receptor during graded hypoxia in cerebral cortex of newborn piglets. Neurosci. 92:685–692.

    Google Scholar 

  16. Zanelli, S. A., Numagami, Y., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1999. NMDA receptor mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem. Res. 24:437–446.

    Google Scholar 

  17. Tominaga, T., Sato, S., Ohnishi, T., and Ohnishi, S. 1994. Electron paramagnetic resonance (EPR) detection of nitric oxide produced durin forebrain ischemia of the rat. J. Cereb. Blood Flow Metab. 14:715–722.

    Google Scholar 

  18. Lamprecht W., Stein P., Heinz F., and Weisser, H. 1994. Creatine Phosphate. In: Methods of Enzymatic Analysis (Bergmeyer HU ed.), Vol. 4, Academic Press: New York, pp 1777–1781.

    Google Scholar 

  19. Forstermann, U., Boissel, J. P., and Kleinert, H. 1998. Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J., 12:773–790.

    Google Scholar 

  20. Shaul, P. W., North, A. J., Brannon, T. S., Ujiie, K., Wells, L. B., Nisen, P. A., Lowenstein, C. J., Snyder, S. H., and Star, R. A. 1995. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am. J. Respir. Cell. Mol. Biol., 13:167–174.

    Google Scholar 

  21. Prabhakar, N. R., Rao, S., Premkumar, D., Pieramici, S. F., Kumar, G. K., and Kalaria, R. K. 1996. Regulation of neuronal nitric oxide synthase gene expression by hypoxia. Role of nitric oxide in respiratory adaptation to low PO2. Adv. Exp. Med. Biol. 410:345–348.

    Google Scholar 

  22. Guo, Y., Ward, M. E., Beasjours, S., Mori, M., and Hussain, S. N. A. 1997. Regulation of cerebellar nitric oxide production in response to prolonged in vivo hypoxia. J. Neurosci. Res. 49:89–97.

    Google Scholar 

  23. Zhang, Z. G., Chopp, M., Gautam, S., Zaloga, C., Zhang, R. L., Schmidt, H. H., Pollock, J. S., and Forstermann, U. 1994. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 654:85–95.

    Google Scholar 

  24. Samdani, A. F., Dawson, T. M., and Dawson, V. L. 1997. Nitric oxide synthase in models of focal ischemia. Stroke 28: 1283–1288.

    Google Scholar 

  25. Mishra, O. P. and Delivoria-Papadopoulos, M. 1999. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res. Bull. 48:233–238.

    Google Scholar 

  26. Choi, D. W. 1995. Calcium: Still center-stage in hypoxicischemic neuronal death. TINS 18:58–60.

    Google Scholar 

  27. Kristian, T. and Siesjo, B. K. 1998. Calcium in ischemic cell death. Stroke 29:705–718.

    Google Scholar 

  28. Smith, D. S., Rosenthal, M., Nioka, S., Subramanian, H., and Chance, B. 1986. Brain cytochromes and change in energy states. Soc. Magn. Res. Abstr. 4:1113–1114.

    Google Scholar 

  29. Turrens, J. G., Alexandre, A., and Lehninger, A. L. 1985. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:271–278.

    Google Scholar 

  30. Choi, D. W. 1990. Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci. 10:2493–2501.

    Google Scholar 

  31. Rothman, S. M. and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.

    Google Scholar 

  32. Monoghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365–402.

    Google Scholar 

  33. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischaemic damage in the brain. Science 226:850–852.

    Google Scholar 

  34. Kochnar, A., Zivan, J. A., Lyden, P. D., and Mazzarella, V. 1988. Glutamate antagonist therapy reduced neurologic deficits produced by focal central nervous system ischemia. Arch. Neurol. 45:148–153.

    Google Scholar 

  35. Park, C. K., Nehis, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. 1988. The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24: 543–551.

    Google Scholar 

  36. Bullock, R., Graham, D. I., Min-Hsiung, C., Lowe, D., and Mc-Culloch, J. 1990. Focal cerebral ischemia in the cat: pretreatment with a competitive NMDA receptor antagonist, D-CPPene. J. Cereb. Blood Flow and Metab. 10:668–674.

    Google Scholar 

  37. Tacconi, S., Ratti, E., Marien, M. R., Gaviraghi, G., and Bowery, N. G. 1993. Inhibition of [3H]-(+)-MK-801 binding to rat brain sections by CPP and 7-chlorokyneuric acid: an autoradiographic analysis. Br. J. Pharmacol. 108:668–674.

    Google Scholar 

  38. Zeevalk, G. D. and Nicklas, W. J. 1992. Developmental differences in antagonism of NMDA toxicity by the polyamine site antagonist ifenprodil. Dev. Brain Res. 65:147–155.

    Google Scholar 

  39. Hoffman, D. J., Marro, P. J., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Protective effect of MgSO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxic in the newborn piglet. Brain Res. 644:144–149.

    Google Scholar 

  40. McDonald, J. W., Silverstein, F. S., Cardona, D., Hudson, C., Chen, R., and Johnston, M. V. 1990. Systemic administration of MK-801 protects against N-methyl-D-aspartate and quisquilate-mediated neurotoxicity in perinatal rats. Neurosci. 36: 589–599.

    Google Scholar 

  41. Dawson, V. L., Dawson, T. M., London, E. D., Bredt. D. S., and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical culture. Proc. Natl. Acad. Sci. USA 88:6368–6371.

    Google Scholar 

  42. Dawson, T. M., Zhang, J., Dawson, V. L., and Snyder, S. H. 1994. Nitric oxidecellular regulation and neuronal injury. Prog. Brain Res. 103:365–369.

    Google Scholar 

  43. Huang, J., Huang, P. L., Panathian, N., Dalkara, T., Fishman, M. C., and Moskowitz, M. A. 1994. Effect of cerebral ischemia in mice deficient neuronal nitirc oxide synthase. Science 265: 1883–1885.

    Google Scholar 

  44. Yun, H.-Y., Dawson, V. L., and Dawson T. M. 1997. Nitric oxide in health and diseases of the nervous system. Mol. Psychiatr. 2:300–310.

    Google Scholar 

  45. Bhat, G. K., Mahesh, V. B., Lamar, C. A., Ping, L., Aguan, K., and Brann, D. W. 1997. Histochemical localization of nitric oxide neurons in the hypothalamus: association with gonadotropinrelaeasing hormone neurons and co-localization with N-methyl-D-aspartate receptors. Neuroendocrinology 62:187–197.

    Google Scholar 

  46. Aoki, C., Rhee, J., Lubin, M., and Dawson, T. M. 1997. NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre-and postsynaptic sites and in spines. Brain Res. 750:25–40.

    Google Scholar 

  47. Bredt, D. S. and Snyder, S. H. 1990. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acd. Sci. 87:682–685.

    Google Scholar 

  48. Garthwaite, J. Charles, S. L., and Chess-William, R. 1988. Endothelium derived relaxing factorrelease on activation of NMDA receptor suggests roles oas intracellular messenger in brain. Nature 336:385–388.

    Google Scholar 

  49. Kiedrowski, L. Costa, E. and Wroblewski, J. T. 1992. Glutamate receptor agonists stimulate nitric oxide synthasein primary culture of cerebellar granule cells. J. Neurchem. 58:335–341.

    Google Scholar 

  50. Aoki, C., Fenstemaker, S., Lubin, M., and Go, C. G. 1993. Nitric oxide synthase in visual cortex of monocular monkey as revealed by light and electron microscopic immunochemistry. Brain Res. 620:97–113.

    Google Scholar 

  51. Christopherson, K. S., Hiller, B. S., Lim, W. A., and Bredt, D. S. 1999. PSD-95assembles a ternary complex with the N-methyl-D-aspartate receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem. 274:27467–27473.

    Google Scholar 

  52. Sattler, R., Xion, Z., Lu, W.-Y., Hafner, M., MacDonald, J. F., and Tymianski, M. 1999. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848.

    Google Scholar 

  53. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. 1980. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., 87:1620–1624.

    Google Scholar 

  54. Ischiropoulos, H., Zhu, L., and Beckman, J. S. 1992. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298:446–451.

    Google Scholar 

  55. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    Google Scholar 

  56. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  57. Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J-C., Smith, C. D. and Beckman, J. S. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298:431–437.

    Google Scholar 

  58. Beckman, J. S., Ischiropoulos, H., Zhu, I., van der Woerd, M., Smith, C. D., Chen, J., Harrison, J., Martin, J.-C., and Tsai, M. 1992. Kinetics of superoxide dismustase and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.

    Google Scholar 

  59. Beckman, J. S., Ye, Y. Z., and Anderson, P. G. 1994. Excessive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler 375:81–88.

    Google Scholar 

  60. Yun, H. Y., Dawson, V. L., and Dawson, T. M. 1997. Nitric oxide in health and disease of the nervous system. Mol. Psych. 2:300–310.

    Google Scholar 

  61. Good, P. F., Hsu, A., Werner, P., Derl, D. P., and Warren, O. 1998. Protein nitration in Parkinson's Disease. J. Neuropath. Exper. Neurol. 57:338–342.

    Google Scholar 

  62. Iadecola, C. 1997. Bright and dark sides of nitric oxide in ischemic brain injury. TINS 20:132–139.

    Google Scholar 

  63. Beckman, J. S. Peroxynitrite, superoxide dismutase, and tyrosine nitration in neurodegeneration. Prog. Brain Res., 103: 271-280.

  64. Beckman, J. S., Carson, M., Smith, C. D., and Koppenol, W. H. 1993. ALS, SOD and peroxynitrite. Nature 364-584.

  65. Good, P. F., Werner, P., Hsu, A., Olanow, C. W., and Perl, D. P. 1996. Evidence for neuronal oxidative damage in Alzheimer's disease. Am. J. Pathol. 149:21–28.

    Google Scholar 

  66. Bruijn, L. I., Beal, M. F., and Becher, M. W. 1997. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine of hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94:7606–7611.

    Google Scholar 

  67. Smith, M. A., Richey-Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. 1997. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17:2653–2657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, O.P., Zanelli, S., Ohnishi, S.T. et al. Hypoxia-Induced Generation of Nitric Oxide Free Radicals in Cerebral Cortex of Newborn Guinea Pigs. Neurochem Res 25, 1559–1565 (2000). https://doi.org/10.1023/A:1026610301978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026610301978

Navigation