Journal of Seismology

, Volume 4, Issue 4, pp 567–587 | Cite as

Geochemical changes at the Bagni di Triponzo thermal spring during the Umbria-Marche 1997–1998 seismic sequence

  • F. Quattrocchi
  • R. Pik
  • L. Pizzino
  • M. Guerra
  • P. Scarlato
  • M. Angelone
  • M. Barbieri
  • A. Conti
  • B. Marty
  • E. Sacchi
  • G.M. Zuppi
  • S. Lombardi
Article

Abstract

After the earthquakes of September 26, 1997, that hit the Umbria-Marcheboundary (Apennine, Central Italy), with a maximum 6.0 Mw, aprogram of geochemical surveying together with a collection ofhydrogeological changes episodes was extended throughout theepicentre-area, taking the yearly period of the seismic sequence as a whole.After a first areal screening, the Bagni di Triponzo thermal spring wasselected for a discrete temporal monitoring (weekly and monthly basis),being the unique thermal spring throughout the epicentre area. This sitedeserves peculiar interest in deepening the knowledge about deep fluidscirculation changing during seismicity.Laboratory and on-field analyses included major, minor and trace elementsas well as dissolved gases (He, Ar, CH4, CO2, H2S,222Rn, NH4, As, Li, Fe, B, etc...) and selected isotopic ratios(C, H, O, He, Sr, Cl), meaningful from tectonic point of view.The chemistry and isotopic chemistry of the spring were fully outlined anddiscussed, pointing out the main process involving the thermal aquifer: thewater-rock interaction inside the Evaporite Triassic Basement (ETB),possibly involving also the Paleozoic Crystalline Basement. On theother hand, sudden and apparent geochemical and hydrogeologicalvariations during the seismic sequence ruled out an evolution in thewater-rock interaction processes. They occurred both at depth, i.e.,induced by fluid remobilization within the crust explained by the Coseismic Strain Model and by the Fault Valve Activity Model, and in the shallow part of the reservoir (i.e., meteoric watercontamination). A statistical multivariable analysis (Factor Analysis) wasaccomplished to better constrain the correlation between the paroxysmalphases of the seismic sequence and the observed trends and spike-likeanomalies. The groundwater variations was inferred to occur mainly insidethe ETB, from depth (1–2 km) up to surface, particularly in associationof the Sellano earthquake (14/10/1997) and of the seismic re-activationof the sequence at the end of March 1998 (Gualdo Tadino-Rigali andVerchiano areas). The lack of deeper input from below the ETB (slightsignature of PCB), as the lack of He mantle signature, during the seismicperiod as a whole, accounted for seismogenic fault segments rooted onlyin the crust. The results also provide useful information about theearthquake-related response mechanisms occurring at this site, thatrepresent the basic task for planning and managing the impendinghydro-geochemical network aimed at defining the relationships betweenseismic cycle, fluids and reliable earthquake forerunners.

Apennines-Central Italy earthquake chemistry-isotope chemistry fluids behaviour-seismicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, A., Azzara, R., Chiarabba, C., Cimini, G.B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courbolex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D. and Ripepe, M., 1998, The 1997 Umbria-Marche, central Italy earthquake sequence: a first look at the main shocks and aftershocks, GRL 25(15), 2861–2864.Google Scholar
  2. Ballantine, C.J., O'Nions, R.K., Oxburg, E.R., Horvarth, F. and Deak, J., 1991, Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin, EPSL 105, 225–246.Google Scholar
  3. Barbieri, M. and Sappa, G., 1996, Primi risultati dell'applicazione di tecniche di analisi isotopica per la determinazione di alcuni caratteri litologici peculiari del sistema idrogeologico dei Colli Albani, Proceedings of the V Meeting of the young researchers in Applied Geology (Cagliari, October, 1996) (in Italian).Google Scholar
  4. Barbieri, M. and Sappa, G., 1997, Metodologie isotopiche nella caratterizzazione delle acque sotterranee: l'esempio dell'Applicazione dello 87Sr/86Sr, IGEA (Ingegneria e Geologia degli Acquiferi) 8, 11–18 (in Italian).Google Scholar
  5. Barbieri, M. and Voltaggio, M., 1998, 234U/238U and 87Sr/86Sr applications to the hydro-geology to the Sangemini area, Terni, Central Italy, Miner. Petrogr.Acta XLI, 119–126.Google Scholar
  6. Barsukov, V.L., Varshal, G.M. and Zamokina, N.S., 1985, Recent results of hydro-geochemical studies for earthquake prediction in the USSR, PAGEOPH 122, 143–156.Google Scholar
  7. Bencini, A., Duchi, V. and Martini, M., 1977, Geochemistry of thermal springs of Tuscany (Italy), Chemical Geology 19, 229–252.Google Scholar
  8. Boni, C.F., Bono, P. and Capelli, G., 1986, Schema geologico dell'Italia centrale, Mem. Soc Geol. It. 35, 991–1012 (in Italian).Google Scholar
  9. Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G. and Gasperini, P., 1997, Catalogo dei forti terremoti in Italia dal 461 a. C. al 1990, Pubbl. ING-SGA ING Rome, Italy, 951 pp. (in Italian).Google Scholar
  10. Boschi, E. and Cocco, M. (eds), 1997, Studi preliminari sulla sequenza sismica dell'Appennino Umbro-Marchigiano del settembre-ottobre 1997, Pubbl. ING 593, 92 pp., ING-Rome (in Italian).Google Scholar
  11. Cello, G., Mazzoli, S., Tondi, E. and Turco, E., 1997, Active tectonics in the Central Apennines and possible implications for seismic hazard analysis in peninsular Italy, Tectonophysics 272, 43–60.Google Scholar
  12. Cello, G., Deiana, G., Mangano, P., Serva, L. and Vittori, E., 1998, Evidence for surface faulting during the September 26, 1997 Colfiorito (Central Italy) earthquakes, J. Eearthquake Eng. 2, 303–324.Google Scholar
  13. Chiodini, G., Giaquinto, S. and Zanzari, A.R., 1982, Relazione tra il chimismo delle sorgenti Umbre e le caratteristiche litologiche degli acquiferi, In: Relazione CNR-PFE-SPEG, Seminario Informativo 3, Pubbl. CNR-Rome (in Italian).Google Scholar
  14. Chiodini, G., Frondini, G. and Marini, L., 1995a, Theoretical geothermometers and PCO2 indicators of aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Applications to the thermal springs of the etruscan sell, Italy, Applied Geochem. 10, 337–346.Google Scholar
  15. Chiodini, G., Frondini, G. and Marini, L., 1995b, Deep structure and carbon dioxide degassing in Central Italy, Geothermics 24, 81–94.Google Scholar
  16. Cinti, F.R., Cucci, L., Marra, F. and Montone, P., 1999, The 1997 Umbria-Marche (Italy) earthquake sequence: relationship between ground deformation and seismogenic structure, GRL 26, 895–898.Google Scholar
  17. Clark, J. and Fritz, P., 1997, Environmental isotopes in Hydrology, Lewis Publishers, 328 pp.Google Scholar
  18. Dall'Aglio, M., Quattrocchi, F. and Tersigni, S., 1995, Geochemical evolution of groundwaters from the Iblean Foreland (Sicily, Italy), after the December 12, 1990 earthquake (M = 5.4), Ann. Geof. 38(2), 309–329.Google Scholar
  19. Eggenkamp, H.G.M., Kohnen, M.E.L. and Kreulen, R., 1994, Analytical procedures for δ37Cl measurements. In: Eggenkamp, H.G.M. (ed.), δ37iCl: The Geochemistry of Chlorine Isotopes, Doctoral Thesys 150 p., Faculteit Aardwtenschappen, Universiteit Utrecht, Geologica Ultraiectina 116, 13–21.Google Scholar
  20. Ekström, G., Morelli, A., Boschi, E. and Dziewonski, A.M., 1998, Moment Tensor Analysis of the Central Italy earthquake sequence of September-October 1997, GRL 25, 1971–1974.Google Scholar
  21. Epstein, S. and Mayeda, T.K., 1953, Variations of the 18O/16O ratio in natural water, Geochim. Cosmoc. Acta 4, 213–225.Google Scholar
  22. Galli, P., Bosi, V., Galadini, F., Megharoui, M., Messina, P., Basili, R., Moro, M. and Sposato, A., 1997, Fratturazione superficiale connessa ai terremoti umbro marchigiani del Settembre-ottobre 1997, Il Quaternario 10(2), 255–262 (in Italian).Google Scholar
  23. Galli, G., Mancini, C. and Quattrocchi, F., 2000, Groundwater radon continuous monitoring system (a-scintillation counting) for natural hazard surveillance, PAGEOPH 157, 1–28.Google Scholar
  24. Giaquinto, S., Marchetti, G., Martinelli, A. and Martini, G., 1991, Le acque sotterranee in Umbria, Protagon Editore 209 pp. (in Italian).Google Scholar
  25. Giggenbach, W.F., 1991, Chemical techniques in geothermal exploration, In: D'Amore, F. (ed.), Applications of Geochemistry in Geothermal Reservoir Development, UNITAR/UNIP Centre on small energy resources, pp. 119–143.Google Scholar
  26. Governa, M.E., Lombardi, S., Masciocco, L., Riba, M. and Zuppi, G.M., 1989, Karst and geothermal water circulation in the Central Appennines (Italy), In: Isotope Techniques in the Study of the Hydrology of Fractured and Fissured Rocks, IAEA-Vienna, Sti/Pub/790, 203–214.Google Scholar
  27. Heaton, T.H.E and Vogel, J.C., 1981, 'Excess air' in groundwater', J. Hydrol. 50, 201–216.Google Scholar
  28. Heinicke, J., Italiano, F., Lapenna, V., Martinelli, G. and Nuccio, P.M., 1999, Coseismic geochemical variations in some gas emissions of Umbria-region (Central Italy), In: Proceedings of the 24th EGS General Assembly, Geophysical Research Abstract (EGS N. ISSN 1029- 7006), The Hague, Netherlands, April 1999, pp. 105.Google Scholar
  29. Hem, J., 1989, Study and interpretation of the chemical characteristics of natural water. U.S.G.S. Water Supply, Paper 2254, pp. 263, p. 80.Google Scholar
  30. Hooker, P.J., Bertrami, R., Lombardi, S., O'Nions, R.K. and Oxburg, E.R., 1985, Helium-3 anomalies and crust mantle interaction in Italy, Geoch. Cosmoc. Acta 49, 2505–2513.Google Scholar
  31. King, C.Y., 1986, Gas geochemistry applied to earthquakes prediction: an overview, JGR 91, 12269–12281.Google Scholar
  32. Kroopnick, P., 1974, The dissolved O2-CO2-13C system in eastern equatorial Pacific, Deep Sea Res. 21, 211–227.Google Scholar
  33. Lachenbruch, A.H., 1980, Frictional Heating, Fluid Pressure and the Resistance to Fault Motion, JGR 85, B11, 6097–6112.Google Scholar
  34. Lombardi, S. (Project Leader), Angelone, M., Barbieri, M., Billi, A., Brunori, C.A., Buongiorno, F., Ciotoli, G., Di Filippo, M., Doumaz, F., Duddridge, G.A., Funiciello, R., Fytikas, M., Grainger, P., Guerra, M., Marty, B., Mele, G., Montone, P., Orlandi, C., Papachristou, M., Pavlidis, S., Pizzino, L., Pongetti, F., Quattrocchi, F., Romeo, G., Ruspandini, T., Sacchi, E., Salvi, S., Salvini, S., Scarlato, P., Sciacca, U., Soulakellis, N., Taccetti, Q., Toro, B., Urbini, G., Voltattorni, N., Zouros, N. and Zuppi, G.M., 1999, Geochemical Seismic Zonation, Seismic Hazard Zonation: a multidisciplinary approach using fluid-geochemistry methods, Final Report. DGXII EC Commission, Brussels, (Contract N° ENV4-CT96-0291).Google Scholar
  35. MacDonald, G.J.F., 1953, Anhydrite-gypsum equilibrium relationships, Am. J. Sci. 251, 884–898Google Scholar
  36. Mancini, C., Quattrocchi, F., Guadoni, C., Pizzino, L. and Por-fidia, B., 2000, 222Rn study throughout different seismotectonical areas: comparison between different techniques for discrete monitoring, Annali di Geofisica 43(1), 31–60.Google Scholar
  37. Mariucci, M.T., Amato, A. and Montone, P., 1999, Recent tectonic evolution and present stress in the northern Apennines, Tectonics 18(1), 108–118.Google Scholar
  38. Muir-Wood, R. and King, G.C.P., 1993, Hydrological signatures of earthquake strain, JGR. 98, 22035–22068.Google Scholar
  39. Nanni, T. and Zuppi, G.M., 1986, Acque salate con circolazione profonda in relazione all'assetto strutturale del fronte adriatico e padano dell'Appennino, Mem. Soc. Geol. It. 35, 979–986 (in Italian).Google Scholar
  40. Nur, A. and Walder, J. (eds), 1992, Hydraulic Pulses in the Earth's crust, In Fault mechanics and transport properties of rocks, Academic Press, 530 pp., 461–473.Google Scholar
  41. Parkhurst, D.L., 1995, User's guide to phreeqc, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations, In: U.S. Geological Survey, Water-Resources Investigations Report 95-4227.Google Scholar
  42. Perel'man, A.I., 1986, Geochemical Barriers: theory and practical applications, Applied Geochem. 1, 669–680.Google Scholar
  43. Pik, R., Marty, B., Zimmerman, L. and Dewonck, S., 1999, Mantle and crustal flux in Seismic Zone. Evidence from Helium Isotopes in geothermal fluids from mediterranean areas, In: Final Report of the EC program Geochemical Seismic Zonation, DGXII EC Commission, Brussels, (Contract No. ENV4-CT96-0291).Google Scholar
  44. Quattrocchi, F., Calcara, M., Guerra, M., Lombardi, S. and Pizzino, L., 1997, Risultati preliminari della campagna idrogeochimica effettuata in occasione della sequenza sismica del confine umbro-marchigiano (Settembre-Ottobre 1997), In: Boschi and Cocco (eds), Studi preliminari sulla sequenza sismica dell'Appenninoumbro-marchigiano del settembre-ottobre 1997, Pubbl. 593 ING-Rome, 92 pp., pp. 58–65 (in Italian).Google Scholar
  45. Quattrocchi, F. and Calcara, M., 1998, Test-sites for earthquake prediction experiments. within the Colli Albani region, Phys. Chem. Earth 23(9/10), 915–920.Google Scholar
  46. Quattrocchi, F., 1999, In search of evidences of deep fluid discharges and pore pressure evolution in the crust to explain the seismicity style of Umbria-Marche 1997- 98 seismic sequence (Central Italy), Ann. Geof. 42(4), 609–636.Google Scholar
  47. Quattrocchi, F., Guerra, M., Pizzino, L. and Lombardi, S., 1999, Radon and Helium as pathfinders of fault system and groundwater evolution in different Italian areas, Il Nuovo Cimento 22C(3- 4), 309–316.Google Scholar
  48. Quattrocchi, F., Pizzino, L., Pongetti, F., Romeo, G., Di Stefano, G., Scarlato, P., Sciacca, U. and Urbini, G., 2000, The Geochemical Monitoring System (GMS II) prototype installed at the Acqua Difesa well (Belpasso, CT) in the Etna region, addressed to seismic and volcanic surveillance: first data during the 1999 volcanic crisis, J. Volcanol. Geotherm. Res. 101, 547–567.Google Scholar
  49. Roberts, S.J., Nunn, J.A., Cathles, L. and Cipriani, F.D., 1996, Expulsion of abnormally pressured fluids along faults, JGR. 101, 28231–28252.Google Scholar
  50. Salvi, S., Quattrocchi, F., Angelone, M., Brunori, C.A., Billi, A., Buongiorno, F., Doumaz, F., Funiciello, R., Guerra, M., Lombardi, S., Mele, G., Pizzino, L. and Salvini, F., 2000, A multidisciplinary approach to earthquake research: implementation of a Geochemical Geographic Information System (G2IS) for the Gargano site, Southern Italy, Natural Hazard 20(1- 2), 255–278.Google Scholar
  51. Scholz, C.H., 1998, Earthquakes and friction laws, Nature 391, 37–41.Google Scholar
  52. Sibson, R.H., McMoore, J. and Rankin, A.H., 1975, Seismic pumping - a hydrothermal fluid transport mechanism, J. Geol. Soc. Lond. 131, 653–659.Google Scholar
  53. Sibson, R.H., 1996, Structural permeability of fluid driven faultfracture meshes, J. Struct. Geol. 18, 1031–1042.Google Scholar
  54. Sibson, R.H., 1998, Involvment of fluids in normal faulting: field evidence and models, In: Proceedings of the International Workshop 'The resolution of geological analysis and models for earthquake faulting studies', Camerino University, 3- 6 June 1998, pp. 79–83.Google Scholar
  55. Stramondo, S., Tesauro, M., Briole, P., Sansosti, E., Salvi, S., Lanari, R., Anzidei, M., Baldi, P., Fornaro, G., Avallone, A., Buongiorno, F., Franceschetti, G. and Boschi, E., 1999, The September 26, 1997 Colfiorito, Italy, earthquakes: modeled coseismic surface displacement from SAR interferometry and GPS, GRL 26(7), 883–886.Google Scholar
  56. Sugisaki, R. and Sugiura, T., 1986, Gas anomalies at three mineral springs and a fumarole before an inland earthquake, Central Japan, JGR 91, B12, 12296–12304.Google Scholar
  57. Thomas, D., 1988, Geochemical precursors to seismic Activity, PAGEOPH 126, 241–266.Google Scholar
  58. Torgersen, T., Kennedy, B.M., Hiyagon, H., Chiou, K.Y., Reynolds, J.H. and Clarke, W.B., 1989, Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia, EPLS 92, 43–56.Google Scholar
  59. Toutain, J.P. and Baubron, J.C., 1999, Gas Geochemistry and seismotectonics: a review, Tectonophysics 304, 1–27.Google Scholar
  60. Tsunogai, U. and Wakita, H., 1995, Precursory chemical changes in groundwater: Kobe earthquake, Japan, Science 269, 61–63.Google Scholar
  61. Wakita, H., Igarashi, G. and Notsu, G., 1991, An anomalous radon decrease in groundwater prior to an M 6.0 earthquake: a possible precursor? GRL 18 (4), 629–632.Google Scholar
  62. Zuppi, G.M., Fontes, J.C. and Letolle, R., 1974, Isotope du milieu et circulation d'eaux sulphurées dans le Latium, In: Isotope techniques in groundwater hydrology. IAEA-Vienna, Sti/Pub/ 235(1), 341–361.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • F. Quattrocchi
    • 1
  • R. Pik
    • 2
  • L. Pizzino
    • 1
  • M. Guerra
    • 1
  • P. Scarlato
    • 1
  • M. Angelone
    • 3
  • M. Barbieri
    • 4
  • A. Conti
    • 4
  • B. Marty
    • 2
  • E. Sacchi
    • 4
  • G.M. Zuppi
    • 4
    • 5
  • S. Lombardi
    • 4
  1. 1.Istituto Nazionale di Geofisica (ING)RomeItaly
  2. 2.CNRS-CRPG NancyVandoeuvre CedexFrance
  3. 3.AMB-TEIN CHIM LaboratoryENEARomeItaly
  4. 4.Dipartimento di Scienze della TerraUniversità `La Sapienza'RomeItaly
  5. 5.Dipartimento di Scienze AmbientaliUniversità Ca'Foscari di VeneziaVeneziaItaly

Personalised recommendations