Advertisement

Journal of Protein Chemistry

, Volume 19, Issue 6, pp 431–439 | Cite as

Native Fluorescence and Mag-Indo-1-Protein Interaction as Tools for Probing Unfolding and Refolding Sequences of the Bovine Serum Albumin Subdomain in the Presence of Guanidine Hydrochloride

  • Pierre M. Viallet
  • Tuan Vo-Dinh
  • Anne-Cécile Ribou
  • Jean Vigo
  • Jean-Marie Salmon
Article

Abstract

Changes in the fluorescence spectrum of tryptophans Trp 134 and Trp 212 in bovine serum albumin (BSA) and of Trp 214 of human serum albumin in the presence of the chaotropic agent guanidine hydrochloride (Gnd) were studied. A detailed analysis of the fluorescence spectrum of native BSA yielded the fluorescence spectrum for each tryptophan of BSA. Modifications in the binding of Mag-indo-1 to BSA, which results in a specific quenching of the fluorescence spectrum of Trp 134 associated with an energy transfer from Trp 134 to the protein-bound Mag-indo-1, were also investigated. Changes occurring when the Gnd concentration is decreased stepwise cover a larger concentration scale of Gnd than the reverse protocol, allowing one to suggest that the resulting conformational changes in the subdomain IA of BSA involve at least three different steps.

Fluorescence spectra fluorescence quenching energy transfer protein folding conformational changes structural biology tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bell, K. L. and Brenner, H. C. (1982). Biochemistry 21, 799–804.Google Scholar
  2. Brown, J. R. (1977). In Albumin Structure, Function, and Uses (Rosenoer, V. M., Oratz, M., and Rothschild, M. A., eds.), Pergamon Press, Oxford, pp. 27–51.Google Scholar
  3. Carter, D. C. and He, X. M. (1992). Nature 358, 209–215.Google Scholar
  4. Carter, D. C. and Ho, J. X. (1994). In Advances in Protein Chemistry, Vol. 45 (Anfinsen, C. B., Edsall, J. T., Richards, F. M., and Eisenberg, D. S., eds), Academic Press, San Diego, California, pp. 153–203.Google Scholar
  5. Chahboun, J., Salmon, J. M., and Viallet, P. M. (1996). J. Photochem. Photobiol. B Biol. 99, 125–130.Google Scholar
  6. Dill, K. A. (1985). Biochemistry 24, 1501–1509.Google Scholar
  7. Dröge, J. H. M., Janssen, L. H. M., and Wilting, J. (1988). Biochem. J. 250, 443–446.Google Scholar
  8. Eftink, M. and Ghiron, C. A. (1977). Biochemistry 16, 5546–5551.Google Scholar
  9. Eftink, M., Zajicek, J. L., and Ghiron, C. A. (1977). Biochim. Biophys. Acta 491, 473–481.Google Scholar
  10. Guex, N. and Peisch, M. C. (1997). Electrophoresis 18, 2714–2723.Google Scholar
  11. Halfman, C. J. and Nishida, T. (1971). Biochim. Biophys. Acta 243, 294–303.Google Scholar
  12. Haugland, R. P. (1992–1994) Molecular probes. Handbook of fluorescent probes and research chemicals, Molecular Probes Inc.Google Scholar
  13. Hirayama, K., Akashi, S., Furuya, M., and Fukuhara, K. (1990). Biochem. Biophys. Res. Commun. 173, 639–646.Google Scholar
  14. Honoré, B. and Frandsen, P. C. (1986). Biochem. J. 236, 365–369.Google Scholar
  15. Honoré, B. and Pedersen, A. O. (1989). Biochem. J. 258, 199–204.Google Scholar
  16. Ivkova, M. N., Vedenkina, N. S., and Burshtein, E. A. (1971). Mol. Biol. 5, 168–176.Google Scholar
  17. Jones, M. N. (1975). In Biological Interfaces, Elsevier, Amsterdam, pp. 101–130.Google Scholar
  18. Lapanje, S. (1987). In Physicochemical Aspects of Protein Denaturation, Wiley, New York, pp. 156–179.Google Scholar
  19. Mao, S.-Y. and Maid, A. H. (1987). Biochemistry 26, 3576–3582.Google Scholar
  20. Morelle, B., Salmon, J. M., Vigo, J., and Viallet, P. (1993). Photochem. Photobiol. 58, 795–801.Google Scholar
  21. Morelle, B., Salmon, J. M., Vigo, J., and Viallet, P. (1994). Anal. Biochem. 218, 170–176.Google Scholar
  22. Moriyama, Y., Sato, Y., and Takeda, K. (1993). J. Colloid Interface Sci. 156, 420–424.Google Scholar
  23. Moriyama, Y., Oata, D., Hachiya, K., Mitsui, Y., and Takeda, K. (1996). J. Protein Chem. 15, 265–272.Google Scholar
  24. Murphy, E. C., Freudenrich, C., Levy, L. A., London, R. E., and Lieberman, M. (1989). Proc. Natl. Acad. Sci. USA 86, 2981–2984.Google Scholar
  25. Peisch, M. C. (1995). Bio/Technology 13, 658–660.Google Scholar
  26. Peisch, M. C. (1996). Biochem. Soc. Trans. 24, 274–279.Google Scholar
  27. Peterman, B. F. and Laidler, K. J. (1980). Arch. Biochem. Biophys. 199, 158–164.Google Scholar
  28. Polet, G. and Steinhardt, J. (1968). Biochemistry 7, 1348–1356.Google Scholar
  29. Punyiczki, M. and Rosenberg, A. (1992). Biophys. Chem. 42, 93–100.Google Scholar
  30. Quamme, G. A. and Rabkin, S. W. (1990). Biochem. Biophys. Res. Commun. 167, 1406–1412.Google Scholar
  31. Raju, B., Murphy, E., Levy, L. A., Hall, L.D., and London, R. E. (1989). Am. J. Physiol. 256 (Cell Physiol. 25), C540–C548.Google Scholar
  32. Reynolds, J. A., Herbert, S., Polet, H., and Steinhardt, J. (1967). Biochemistry 6, 937–947.Google Scholar
  33. Reynolds, J. A., Gallagher, J. P., and Steinhardt, J. (1970). Biochemistry 9, 1232–1238.Google Scholar
  34. Steinhardt, J., Krijn, J., and Leidy, J. G. (1971). Biochemistry 10, 4005–4014.Google Scholar
  35. Steinhardt, J., Leidy, J. G., and Mooney, J. P. (1972). Biochemistry 11, 1809–1817.Google Scholar
  36. Steinhardt, J., Stocker, N., Carrol, D., and Birdi, K. S. (1974). Biochemistry 13, 4461–4068.Google Scholar
  37. Steinhardt, J., Scott, J. R., and Birdi, K. S. (1977). Biochemistry 16, 718–725.Google Scholar
  38. Strop, P., Zizkovsky, V., Korcakova, J., Havranova, M., and Mikes, F. (1984). Int. J. Biochem. 16, 805–813.Google Scholar
  39. Takeda, K., Miura, M., and Takagi, T. (1981). J. Colloid Interface Sci. 82, 38–44.Google Scholar
  40. Takeda, K., Shigeta, M., and Aoki, M. (1987). J. Colloid Interface Sci. 117, 120–126.Google Scholar
  41. Takeda, K., Sasa, K., Kawamoto, K., Wada, A., and Aoki, M. (1988). J. Colloid Interface Sci. 124, 284–289.Google Scholar
  42. Takeda, K., Wada, A., Yamamoto, K., Moriyama, Y., and Aoki, K. (1989). J. Protein Chem. 8, 653–659.Google Scholar
  43. 't Hart, B. J., Wilting, J., and De Gier, J. J. (1986). Biochem. Pharmacol. 35, 1005–1009.Google Scholar
  44. Viallet, P. M., Vo-Dinh, T., Bunde, T., Pesco, J., Vigo, J., and Salmon, J. M. (1997). In Proceedings of Biochemical Sensing, Imaging, and Tracking Technologies II, Vol. 297, pp. 105–116.Google Scholar
  45. Viallet, P. M., Vo-Dinh, T., Bunde, T., Ribou, A. C., Vigo, J., and Salmon, J. M. (1999). J. Fluorescence 9, 153–161.Google Scholar
  46. Wetzel, R., Becker, M., Behlke, J., Billwitz, H., Bohm, S., Ebert, B., Hamann, H., Krumbiegel, J., and Lassmann, G. (1980). Eur. J. Biochem. 104, 469–478.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Pierre M. Viallet
    • 1
    • 2
  • Tuan Vo-Dinh
    • 3
  • Anne-Cécile Ribou
    • 1
  • Jean Vigo
    • 1
  • Jean-Marie Salmon
    • 1
  1. 1.Quantitative Microfluorometry Group, Laboratory of Physicochemical Biology of Integrated SystemsUniversity of PerpignanPerpignanFrance
  2. 2.Advanced Monitoring Development Group, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge
  3. 3.Advanced Monitoring Development Group, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations