Hydrobiologia

, Volume 436, Issue 1–3, pp 209–216 | Cite as

Effect at the ecosystem level of elevated atmospheric CO2in an aquatic microcosm

  • Shuichi Shikano
  • Zen'Ichiro Kawabata
Article

Abstract

We studied the responses of an aquatic microcosm in two different eutrophic conditions to elevated atmospheric CO2concentration. We used microcosms, consisting of Escherichia coli(bacteria), Tetrahymena thermophila(protozoa) and Euglena gracilis(algae), in salt solution with 50 and 500 mg l−1of proteose peptone (eutrophic and hypereutrophic conditions, respectively) under ambient and elevated CO2(1550±100 μl l−1) conditions. The density of E. gracilisincreased significantly under elevated CO2in both eutrophic and hypereutrophic microcosms. In the eutrophic microcosm, the other elements were not affected by elevated CO2. In the hypereutrophic microcosm, however, the concentrations of ammonium and phosphate decreased significantly under elevated CO2. Furthermore, the density of T. thermophilawas maintained in higher level than that in the microcosm with ambient CO2and the density of E. coliwas decreased by CO2enrichment. Calculating the carbon biomasses of T. thermophilaand E. colifrom their densities, the changes in their biomasses by CO2enrichment were little as compared with large increase of E. graciliscarbon biomass converted from chlorophyll a. From the responses to elevated CO2in the subsystems of the hypereutrophic microcosm consisting of either one or two species, the increase of E. graciliswas a direct effect of elevated CO2, whereas the changes in the density of E. coliand T. thermophilaand the decreases in the concentration of ammonium and phosphate are considered to be indirect effects rather than direct effects of elevated CO2. The indirect effects of elevated CO2were prominent in the hypereutrophic microcosm.

species-defined microcosm atmospheric CO2 indirect effect Escherichia coli Tetrahymena thermophila Euglena gracilis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyers, R. J. & H. T. Odum, 1993. Ecological Microcosms. Springer-Verlag, New York: 557 pp.Google Scholar
  2. Carrick, H. J. & G. L. Fahnenstiel, 1991. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36: 1335-1345.Google Scholar
  3. Diaz, S., J. P. Grime, J. Harris & E. McPherson, 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616-617.Google Scholar
  4. Ferense, M. C. & R. J. Beyers, 1972. Studies of a simple laboratory microecosystem: effects of stress. Ecology 53: 709-713.Google Scholar
  5. Fuma, S., H. Takeda, K. Miyamoto, K. Yanagisawa, Y. Inoue, N. Sato, M. Hirano & Z. Kawabata, 1998. Effects of γ-rays on the populations of the steady-state ecological microcosm. Int. J. Radiat. Biol. 74: 145-150.Google Scholar
  6. Gill, C. O. & K. H. Tan, 1979. Effect of carbon dioxide on growth of Pseudomonas fluorescens. Appl. envir. Microbiol. 38: 237-240.Google Scholar
  7. Horne, A. J. & C. R. Goldman, 1994. Limnology. 2nd edn. McGraw-Hill, New York: 576 pp.Google Scholar
  8. Ishii, N., Z. Kawabata, S. Nakano, M. Min & R. Takata, 1998. Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond. Hydrobiologia 380: 67-76.Google Scholar
  9. Jones, T. H., L. J. Thompson, J. H. Lawton, T. M. Bezemer, R. D. Bardgett, T. M. Blackburn, K. D. Bruce, P. F. Cannon, G. S. Hall, S. E. Hartley, G. Howson, C. G. Jones, C. Kampichler, E. Kandeler & D. A. Ritchie, 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280: 441-443.Google Scholar
  10. Kawabata, Z., K. Matsui, K. Okazaki, M. Nasu, N. Nakano & T. Sugai, 1995. Synthesis of a species-defined microcosm with protozoa. J. protozool. Res. 5: 23-26.Google Scholar
  11. Kawabata, Z., N. Ishii, M. Nasu & M. Min, 1998. Dissolved DNA produced through a prey-predator relationship in a species-defined aquatic microcosm. Hydrobiologia 385: 71-76.Google Scholar
  12. Lawler, S. P., 1993. Direct and indirect effects in microcosm communities of protists. Oecologia 93: 184-190.Google Scholar
  13. Laws, E. A., D. G. Redalje, L. W. Haas, P. K. Bienfang, R. W. Eppley, W. G. Harrison, D. M. Karl & J. Marra, 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161-1169.Google Scholar
  14. Loferer-KroßBacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. envir. Microbiol. 64: 688-694.Google Scholar
  15. Lussenhop, J., A. Treonis, P. S. Curtis, J. A. Teeri & C. S. Vogel, 1998. Response of soil biota to elevated atmospheric CO2in poplar model systems. Oecologia 113: 247-251.Google Scholar
  16. Marilley, L., U. A. Hartwig & M. Aragno, 1999. Influence of an elevated atmospheric CO2content on soil and rhizosphere bacterial communities beneath Lolium perenneand Trifolium repensunder field conditions. Microbiol. Ecol. 38: 39-49.Google Scholar
  17. Matsui, K., S. Kono, A. Saeki, N. Ishii, M. G. Mangi & Z. Kawabata, 2000. Direct and indirect interaction for coexisting in a species defined microcosm. Hydrobiologia 435: 109-116.Google Scholar
  18. McIntyre, M. & B. McNeil, 1997. Effects of elevated dissolved CO2levels on batch and continuous cultures of Aspergillus nigerA60: an evaluation of experimental methods. Appl. envir. Microbiol. 63: 4171-4177.Google Scholar
  19. Moran, R. & D. Porath, 1980. Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol. 65: 478-479.Google Scholar
  20. Naeem, S. & L. Shibin, 1998. Consumer species richness and autotrophic biomass. Ecology 79: 2603-2615.Google Scholar
  21. Nakajima, H. & Z. Kawabata, 1996. Sensitivity analysis in microbial communities. In Colwell, R., U. Shimidu & K. Owada (eds), Microbial Diversity in Time and Space: 85-91. Plenum Press, New York: 172 pp.Google Scholar
  22. Neftel, A., E. Moor, H. Oeschger & B. Stauffer, 1985. Evidence form polar ice cores for the increase in atmospheric CO2in the past two centuries. Nature 315: 45-47.Google Scholar
  23. Repaske, R. & M. A. Clayton, 1978. Control of Escherichia coligrowth by CO2. J. Bact. 135: 1162-1164.Google Scholar
  24. Rillig, M. C., C. B. Field & M. F. Allen, 1999. Soil biota responses to long-term atmospheric CO2enrichment in two California annual grasslands. Oecologia 119: 572-577.Google Scholar
  25. Rogers, A., B. U. Fischer, J. Bryant, M. Frehner, H. Blum, C. A. Raines & S. P. Long, 1998. Acclimation of photosynthesis to elevated CO2under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2enrichment. Plant Physiol. 118: 683-689.Google Scholar
  26. Shikano, S. & Y. Kurihara, 1985. Community responses to organic loading in a microcosm. Jap. J. Ecol. 35: 297-305.Google Scholar
  27. Shikano, S. & Y. Kurihara, 1988. Analysis of factors controlling responses of an aquatic microcosm to organic loading. Hydrobiologia 169: 251-257.Google Scholar
  28. Taub, F. B., 1976. Demonstration of pollution effects in aquatic microcosm. Int. J. Envir. Stud. 10: 23-33.Google Scholar
  29. Taub, F. B. & A. M. Dollar, 1968. The nutritional inadequacy of Chlorellaand Chlamydomonasas food for Daphnia pulex. Limnol. Oceanogr. 13: 607-617.Google Scholar
  30. Valley, G. & L. F. Rettger, 1927. The influence of carbon dioxide on bacteria. J. Bact. 14: 101-137.Google Scholar
  31. Welschmeyer, N. A. & C. J. Lorenzen, 1985. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30: 1-21.Google Scholar
  32. Wong, S. C., 1979. Elevated atmospheric partial pressure of CO2and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3and C4plants. Oecologia 44: 68-74.Google Scholar
  33. Zangerl, A. R. & F. A. Bazzaz, 1984. The response of plants to elevated CO2. II. Competitive interactions among annual plants under varying light and nutrients. Oecologia 62: 412-417.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Shuichi Shikano
  • Zen'Ichiro Kawabata

There are no affiliations available

Personalised recommendations