Glycoconjugate Journal

, Volume 17, Issue 3–4, pp 153–162 | Cite as

Functional roles of glycosphingolipids in signal transduction via lipid rafts

  • Kohji Kasahara
  • Yutaka Sanai
Article

Abstract

The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.

lipid rafts caveolae microdomains glycosphingolipid ganglioside signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hakomori S, Ann Rev Biochem 50, 733–64 (1981).Google Scholar
  2. 2.
    Fishman PH, Brady RO, Science 194, 906–15 (1976).Google Scholar
  3. 3.
    Yamakawa T, Nagai Y, Trends Biochem Sci 3, 128–31 (1978).Google Scholar
  4. 4.
    Tettamanti G, Riboni L, Prog Brain Res 101, 77–100 (1994).Google Scholar
  5. 5.
    Hakomori S, J Biol Chem 265, 18713–6(1990).Google Scholar
  6. 6.
    Hakomori S, Igarashi Y, J Biochem 118, 1091–1103 (1995).Google Scholar
  7. 7.
    Simons K, lkonen E, Nature 387, 569–72 (1997).Google Scholar
  8. 8.
    Brown DA, London E, Annu Rev Cell Dev Biol 14, 111–36 (1998).Google Scholar
  9. 9.
    Anderson RGW, Annu Rev Biochem, 67, 199–225 (1998).Google Scholar
  10. 10.
    Okamoto T, Schlegel A, Scherer PE, Lisanti M, J Biol Chem, 273, 5419–22 (1998).Google Scholar
  11. 11.
    Masserini M, Palestini P, Pitto M, J Neurochem 73, 1–11 (1999).Google Scholar
  12. 12.
    Kurzchalia TV, Parton RG, Curr Opin Cell Biol 11, 424–31 (1999).Google Scholar
  13. 13.
    Anderson RGW, Proc Natl Acad Sci USA 90, 10909–13 (1993).Google Scholar
  14. 14.
    Lisanti MP, Scherer PE, Tang Z-L, Sargiacomo M, Trends Cell Biol 4, 231–35 (1994).Google Scholar
  15. 15.
    Brown RE, J Cell Sci 111, 1–9 (1998).Google Scholar
  16. 16.
    Futerman AH, Trends Cell Biol 5, 377–80 (1995).Google Scholar
  17. 17.
    Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A, Glycobiology 8, (10) pp. xi-xix (1998).Google Scholar
  18. 18.
    Kasahara K, Sanai Y, Biophys Chem 82, 121–7 (1999).Google Scholar
  19. 19.
    Kusumi A, Sako Y, Curr Opin Cell Biol 8, 566–74 (1996).Google Scholar
  20. 20.
    Jacobson K, Dietrich C, Trends Cell Biol 9, 87–91 (1999).Google Scholar
  21. 21.
    Varma R, Mayor S, Nature 394, 798–801 (1998).Google Scholar
  22. 22.
    Friedrichson T, Kurzchalia TV, Nature 394, 802–5 (1998).Google Scholar
  23. 23.
    Rahmann H, Rösner H, Körtje K-H, Beitinger H, Veybold V, In Svennerholm L, Asbury AK, Reisfeld RA, Sandhoff K, Suzuki K, Tettamanti G, Toffano G (eds.) Progress in Brain Research Vol. 101 (Elsevier 1994), pp 127–45.Google Scholar
  24. 24.
    Rock P, Allietta M, Young WWJ, Thompson TE, Tillack TW, Biochemistry 29, 8484–90 (1990).Google Scholar
  25. 25.
    Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Reschle C, Torrisi MR, Pavan A, J Lipid Res 38, 969–80 (1997).Google Scholar
  26. 26.
    Lasley RD, Narayan P, Uittenbogaard A, Smart EJ, J Biol Chem 275, 4417–21 (2000).Google Scholar
  27. 27.
    Rodgers W, Rose JK, J Cell Biol 135, 1515–23 (1996).Google Scholar
  28. 28.
    Moffett S, Brown DA, Linder ME, J Biol Chem 275, 2191–8 (2000).Google Scholar
  29. 29.
    Resh MD, Biochim Biophys Acta 1451, 1–16 (1999).Google Scholar
  30. 30.
    Arudchandran R, Brown MJ, Peirce MJ, Song JS, Zhang J, Siraganian RP, Blank U, Rivera J, J Exp Med 191, 47–60 (2000).Google Scholar
  31. 31.
    Robinson PJ, Immunol Today 12, 35–41 (1991).Google Scholar
  32. 32.
    Hořejší V, Drbal K, Cebecauer M, e>Černý J, Brdička T, Angelisová P, Stockinger H, Immunol Today 20, 356–61 (1999).Google Scholar
  33. 33.
    Ilangumaran S, He H-T, Hoessli DC, Immunol Today 21, 2–6 (2000).Google Scholar
  34. 34.
    Harder T, Scheiffele P, Verkade P, Simons K, J Cell Biol 141, 929–42 (1998).Google Scholar
  35. 35.
    Montixi C, Langlet C, Bernard A, Thimonier J, Dubois C, Wurbel M, Chauvin J, Pierres M, He, H-T, EMBO J 17, 5334–48 (1998).Google Scholar
  36. 36.
    Xavier R, Brennan, T, Li, Q, McCormack, C, Seed, B, Immunity 8, 723–32 (1998).Google Scholar
  37. 37.
    Sheets ED, Holowka D, Baird B, Curr Opin Chem Biol 3, 95–9 (1999).Google Scholar
  38. 38.
    Viola A, Schroeder S, Sakakibara Y, Lanzavecchia, A, Science 283, 680–2 (1999).Google Scholar
  39. 39.
    Mineo C, James GL, Smart EJ, Anderson RGW, J Biol Chem 271, 11930–5 (1996).Google Scholar
  40. 40.
    Liu P, Ying Y, Ko Y-G, Anderson RGW, J Biol Chem 271, 10299–303 (1996).Google Scholar
  41. 41.
    Li S, Seitz R, Lisanti MP, J Biol Chem 271, 3863–8 (1996).Google Scholar
  42. 42.
    Nomura R, Fujimoto T, Mol Biol Cell 10, 975–86 (1999).Google Scholar
  43. 43.
    Minoguchi K, Swaim WD, Berenstein EH, Siraganian RP, J Biol Chem 269, 5249–54 (1994).Google Scholar
  44. 44.
    Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM, Genes & Dev 13, 3125–35 (1999).Google Scholar
  45. 45.
    Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y, J Biol Chem (in press).Google Scholar
  46. 46.
    Guo N, Her GR, Reinfold VN, Brennan MJ, Siraganian RP, Ginsburg V, J Biol Chem 264, 13267–72 (1989).Google Scholar
  47. 47.
    Swaim WD, Minoguchi K, Oliver C, Hamawy MM, Kihara H, Stephan V, Berenstein EH, Siraganian RP, J Biol Chem 269, 19466–73 (1994).Google Scholar
  48. 48.
    Woldemussie E, Ali H, Takaishi T, Siraganian RP, Beaven MA, J Immunol 139, 2431–8 (1987).Google Scholar
  49. 49.
    Stephan V, Guo N, Ginsburg V, Siraganian R P, J Immunol 146, 4271–7 (1991).Google Scholar
  50. 50.
    Zuberbier T, Pfrommer C, Beinholzl J, Hartmann K, Ricklinkat J, Czarnetzki BM, Biochim Biophys Acta 1269, 79–84 (1995).Google Scholar
  51. 51.
    Bremer EG, Schlessinger J, Hakomori S, J Biol Chem 261, 2434–40 (1986).Google Scholar
  52. 52.
    Yates AJ, VanBrocklyn J, Saqr HE, Guan Z, Stokes BT, O'Dorisio MS, Exp Cell Res 204, 38–45 (1993).Google Scholar
  53. 53.
    Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N, Proc Natl Acad Sci USA 92, 5087–91 (1995).Google Scholar
  54. 54.
    Hilbush BS, Levine JM, J Biol Chem 267, 24789–95 (1992).Google Scholar
  55. 55.
    Weis FMB, Davis RJ, J Biol Chem 265, 12059–66 (1990).Google Scholar
  56. 56.
    Pitto M, Mutoh T, Kuriyama M, Ferraretto A, Palestini P, Messerini M, FEBS Lett 439, 93–6 (1998).Google Scholar
  57. 57.
    Claro E, Wallace MA, Fain JN, Nair BG, Patel TB, Shanker G, Baker H-J, Brain Res Mol Brain Res 11, 265–71 (1991).Google Scholar
  58. 58.
    Hanada K, Nishijima M, Akamatsu Y, Pagano RE, J Biol Chem 270, 6254–60 (1995).Google Scholar
  59. 59.
    Sheets ED, Lee GM, Simson R, Jacobson K, Biochemistry 36, 12449–58 (1997).Google Scholar
  60. 60.
    Simons M, Friedrichson T, Schulz JB, Pitto M, Masserini M, Kurzchalia TV, Mol Biol Cell 10, 3187–96 (1999).Google Scholar
  61. 61.
    Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y, Proc Natl Acad Sci USA 91, 2703–7 (1994).Google Scholar
  62. 62.
    Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA, J Biol Chem 274, 34459–66 (1999).Google Scholar
  63. 63.
    Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL, Proc Natl Acad Sci USA 96, 9142–7 (1999).Google Scholar
  64. 64.
    Kasahara K,Watanabe Y, Yamamoto T, Sanai Y, J Biol Chem 272, 29947–53 (1997).Google Scholar
  65. 65.
    Thomas ML, Brown EJ, Immunol Today 20, 406–11 (1999).Google Scholar
  66. 66.
    Dorahy DJ, Burns GF, Biochem J 333, 373–9 (1998).Google Scholar
  67. 67.
    Lasky LA, Ann Rev Biochem 64, 113–39 (1995).Google Scholar
  68. 68.
    Hashimoto Y, Suzuki M, Crocker PR, Suzuki A, J Biochem 123, 468–78 (1998).Google Scholar
  69. 69.
    Schnaar RL, Collins BE, Wright LP, Kiso M, Yropak MB, Roder JC, Crocker PR, Ann NY Acad Sci 845, 92–105 (1998).Google Scholar
  70. 70.
    Tiemeyer M, Goodman CS, Development 122, 925–36 (1996).Google Scholar
  71. 71.
    Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius H-J, J Biol Chem 273, 11205–11 (1998).Google Scholar
  72. 72.
    Gouy H, Debré P, Bismuth G, J Immunol 155 5160–6 (1995).Google Scholar
  73. 73.
    Prinetti A, Iwabuchi K, Hakomori S, J Biol Chem 274, 20916–24 (1999).Google Scholar
  74. 74.
    Palestini P, Pitto M, Ferraretto A, Tettamanti G, Masserini M, Biochemistry 37, 3143–8 (1998).Google Scholar
  75. 75.
    Pitto M, Palestini P, Ferraretto A, Flati S, Pavan A, Ravasi D, Masserini M, Bottiroli G, Biochem J 344, 177–84 (1999).Google Scholar
  76. 76.
    Smart EJ, Foster D, Ying Y-S, Kamen BA, Anderson RGW, J Cel Biol 124, 307–13 (1993).Google Scholar
  77. 77.
    Wang LH, Tu YP, Yang XY, Tsui ZC, Yang FY, FEBS Lett 388, 128–30 (1996).Google Scholar
  78. 78.
    Hara-Yokoyama M, Kukimoto I, Nishina H, Kontani K, Hirabayashi Y, Irie F, Sugiya H, Furuyama S, Katada T, J Biol Chem 271, 12951–5 (1996).Google Scholar
  79. 79.
    Rösner H, Al-Aqtum M, Rahmann H, Neurochem Int 20, 339–51 (1992).Google Scholar
  80. 80.
    Tai T, Kotani M, Kawashima I, Acta Histochem Cytochem 32, 215–22 (1999).Google Scholar
  81. 81.
    Lloyd KO, Furukawa K, Glycoconj J 15, 627–636 (1998).Google Scholar
  82. 82.
    Purpura DP, Nature 276, 520–1 (1978).Google Scholar
  83. 83.
    Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF, Brain Res 261, 163–6 (1983).Google Scholar
  84. 84.
    Roisen FJ, Bartfeld H, Nagele R, Yorke G, Science 214, 577–8 (1981).Google Scholar
  85. 85.
    Ledeen RW, J Neurosci Res 12, 147–59 (1984).Google Scholar
  86. 86.
    Skaper SD, Katoh-Semba R, Varon S, Brain Res 355 19–26 (1985).Google Scholar
  87. 87.
    Schwarz A, Rapaport E, Hirschberg K, Futerman AH, J Biol Chem 270, 10990–98 (1995).Google Scholar
  88. 88.
    Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T, Furukawa K, J Biol Chem 275, 5832–8 (2000).Google Scholar
  89. 89.
    Kojima N, Kurosawa N, Nishi T, Hanai N, Tsuji S, J Biol Chem 269, 30451–6 (1994).Google Scholar
  90. 90.
    Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL, Proc Natl Acad Sci USA 96, 7532–7 (1999).Google Scholar
  91. 91.
    Krämer E, Koch T, Niehaus A, Trotter J, J Biol Chem 272, 8937–45 (1997).Google Scholar
  92. 92.
    Krämer E, Klein C, Koch T, Boytinck M, Trotter J, J Biol Chem 274, 29042–9 (1999).Google Scholar
  93. 93.
    Dyer CA, Benjamins JA, J Cell Biol 111, 625–33 (1990).Google Scholar
  94. 94.
    Bansal R, Pfeiffer SE, Proc Natl Acad Sci USA 86, 6181–5 (1989).Google Scholar
  95. 95.
    Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B, Cell 86, 209–19 (1996).Google Scholar
  96. 96.
    Bosio A, Binczek E, Stoffel W, Proc Natl Acad Sci USA 93, 13280–85 (1996).Google Scholar
  97. 97.
    Iwabuchi K, Handa K, Hakomori S, J Biol Chem 273, 33766–73 (1998).Google Scholar
  98. 98.
    Ledesma MD, Brügger B, Bünning C, Wieland FT, Dotti CG, EMBO J 18, 1761–71 (1999).Google Scholar
  99. 99.
    Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R, EMBO J 18, 6917–26 (1999).Google Scholar
  100. 100.
    Wu C, Butz S, Ying Y-S, Anderson RGW, J Biol Chem 272, 3554–9 (1997).Google Scholar
  101. 101.
    Yamamoto M, Toya Y, Schwencke C, Lisanti M, Myers Jr, MG, Ishikawa Y, J Biol Chem 273, 26963–8 (1998).Google Scholar
  102. 102.
    Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, DeArmond SJ, Mobley WC, J Biol Chem 274, 36707–14 (1999).Google Scholar
  103. 103.
    Ko YG, Lee JS, Kang YS, Seo JS, J Immunol 162, 7217–23 (1999).Google Scholar
  104. 104.
    Feron O, Smith TW, Michel T, Kelly RA, J Biol Chem 272, 17744–48 (1997).Google Scholar
  105. 105.
    Ishizaka N, Griendling KK, Lassegue B, Alexander RW, Hypertension 32, 459–66 (1998).Google Scholar
  106. 106.
    de Weerd WFC, Leeb-Lundberg LMF, J Biol Chem 272, 17858–66 (1997).Google Scholar
  107. 107.
    Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K, EMBO J 12, 1597–1605 (1993).Google Scholar
  108. 108.
    Kifor O, Diaz R, Butters R, Kifor I, Brown EM, J Biol Chem 273, 21708–13 (1998).Google Scholar
  109. 109.
    Teixeira A, Chaverrot N, Schroder C, Strosberg AD, Couraud PO, Cazaubon S, J Neurochem 72, 120–8 (1999).Google Scholar
  110. 110.
    Sheets ED, Holowka D, Baird B, J Cell Biol145, 877–87 (1999).Google Scholar
  111. 111.
    Surviladze Z, Dráberová L, Kubínová L, Dráber P, Eur J Immunol 28, 1847–58 (1998).Google Scholar
  112. 112.
    e>Černý J, Stockinger H, Hořejší V, Eur J Immunol 26, 2335–43 (1996).Google Scholar
  113. 113.
    Kniep B, Cinek T, Angelisová P, Hořejší V, Biochem Biophys Res Commun 203 1069–75 (1994).Google Scholar
  114. 114.
    Olive S, Dubois C, Schachner M, Rougon G, J Neurochem 65, 2307–17 (1995).Google Scholar
  115. 115.
    Schnitzer JE, Oh P, Jacobson BS, Dvorak AM, Proc Natl Acad Sci USA 92, 1759–63 (1995).Google Scholar
  116. 116.
    Mineo C, Anderson RGW, Exp Cell Res 224, 237–42 (1996).Google Scholar
  117. 117.
    Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M, J Cell Biol 126, 111–26 (1994).Google Scholar
  118. 118.
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S, J Biol Chem 273, 9130–8 (1998).Google Scholar
  119. 119.
    Satoh M, Nejad FM, Ohtani H, Ito A, Ohyama C, Saito S, Orikasa S, Hakomori S, Int J Oncol 16, 529–36 (2000).Google Scholar
  120. 120.
    Katagiri YU, Mori T, Hakajima H, Katagiri C, Taguchi T, Takeda T, Kiyokawa N, Fujimoto J, J Biol Chem 273, 35278–82 (1999).Google Scholar
  121. 121.
    Michaely PA, Mineo C, Ying YS, Anderson RGW, J Biol Chem 274, 21430–6 (1999).Google Scholar
  122. 122.
    Perez AS, Bredt DS, Neurosci Lett 258, 121–3 (1998).Google Scholar
  123. 123.
    Brückner K, Labrador JP, Scheiffele P, Herb A, Seeburg PH, Klein R, Neuron 22, 511–24 (1999).Google Scholar
  124. 124.
    Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RGW, Mumby SM, Mol Biol Cell 8, 2365–78 (1997).Google Scholar
  125. 125.
    Czarny M, Lavie Y, Fiucci G, Liscovitch M, J Biol Chem 274, 2717–24 (1999).Google Scholar
  126. 126.
    Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying YS, Anderson RGW, Michel T, J Biol Chem 271, 6518–22 (1996).Google Scholar
  127. 127.
    Maekawa S, Kumanogoh H, Funatsu N, Takei N, Inoue K, Endo Y, Hamada K, Sokawa Y, Biochim Biophys Acta 1323, 1–5 (1997).Google Scholar
  128. 128.
    Zhang W, Trible RP, Samelson LE, Immunity 9, 239–46 (1998).Google Scholar
  129. 129.
    Waugh MG, Lawson D, Tan SK, Hsuan JJ, J Biol Chem 273, 17115–21 (1998).Google Scholar
  130. 130.
    Liu P, Anderson RGW, J Biol Chem 270, 27179–85 (1995).Google Scholar
  131. 131.
    Bhunia AK, Han H, Snowden A, Chatterjee S, J Biol Chem 271, 10660–6 (1996).Google Scholar
  132. 132.
    Chatterjee D, Chakraborty M, Anderson GM, Brain Res 583, 31–44 (1992).Google Scholar
  133. 133.
    Golard A, Glycobiology 8, 1221–5 (1998).Google Scholar
  134. 134.
    Garofalo T, Sorice M, Misasi R, Cinque B, Giammatteo M, Pontieri GM, Cifone MG, Pavan A, J Biol Chem 273, 35153–60 (1998).Google Scholar
  135. 135.
    Yatomi Y, Igarashi Y, Hakomori S, Glycobiology 6, 347–53 (1996).Google Scholar
  136. 136.
    Ortaldo JR, Mason AT, Longo DL, Beckwith M, Creekmore SP, McVicar DW, J Leukocyte Biol 60, 533–9 (1996).Google Scholar
  137. 137.
    Reivinen J, Holthofer H, Miettinen A, Scand J Immunol 48, 615–22 (1998).Google Scholar
  138. 138.
    Gouy H, Deterre P, Debré P, Bismuth G, J Immunol 152, 3271–81 (1994).Google Scholar
  139. 139.
    Janes PW, Ley SC, Magee AI, J Cell Biol 147, 447–61 (1999).Google Scholar
  140. 140.
    Dixon SJ, Stewart D, Grinstein S, Spiegel S, J Cell Biol 105, 1153–61 (1987).Google Scholar
  141. 141.
    Carlson RO, Masco D, Brooker G, Spiegel S, J Neurosci 14 2272–81 (1994).Google Scholar
  142. 142.
    Fan S-F, Wang S, Kao CY, Biochem Biophys Res Commun 200, 1341–5 (1994).Google Scholar
  143. 143.
    van Brocklyn JR, Vandenheede JR, Fertel R, Yates AJ, Rampersaud AA, J Neurochem 69, 116–25 (1997).Google Scholar
  144. 144.
    Saito M, Frielle T, Benovic JL, Ledeen RW, Biochim Biophys Acta 1267, 1–5 (1995).Google Scholar
  145. 145.
    Katoh N, Miyamoto T, Lipids 31, 983–7 (1996).Google Scholar
  146. 146.
    Tsuji S, Yamashita T, Nagai Y, J Biochem 104, 498–503 (1988).Google Scholar
  147. 147.
    Yada Y, Okano Y, Nozawa Y, Biochem J 279, 665–70 (1991).Google Scholar
  148. 148.
    Taga S, Carlier K, Mishal Z, Capoulade C, Mangeney M, Lécluse Y, Coulaud D, Tétaud C, Pritchard LL, Tursz T, Wiels J, Blood 90, 2757–67 (1997).Google Scholar
  149. 149.
    Nojiri H, Stroud M, Hakomori S, J Biol Chem 266, 4531–7 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Kohji Kasahara
    • 1
    • 2
  • Yutaka Sanai
    • 1
    • 2
  1. 1.The Tokyo Metropolitan Institute of Medical ScienceJapan
  2. 2.Tokyo Metropolitan Organization for Medical Research, Bunkyo-kuTokyoJapan

Personalised recommendations