Advertisement

Cancer and Metastasis Reviews

, Volume 19, Issue 1–2, pp 13–17 | Cite as

Tek/Tie2 Signaling: New and Old Partners

  • Nina Jones
  • Daniel J. Dumont
Article

Abstract

A common property amongst angiogenic ligands such as the vascular endothelial growth factors and the angiopoietins is that they can elicit multiple responses depending upon the context of their expression and the presence of other growth factors. Study of the signal transduction pathways initiated by these growth factors provides insight into the molecular and cellular mechanisms that regulate vessel assembly. Key components of signal transduction cascades can then be used as potential targets in angiogenic therapies. This commentary reviews the recent advances into understanding the molecular signaling pathways mediated through the angiopoietin receptor, Tek/Tie2, as well as their effect on the regulation of distinct cellular aspects of angiogenesis.

Tek/Tie2 angiopoietin angiogenesis signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, JainV, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161-1169, 1996Google Scholar
  2. 2.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55-60, 1997Google Scholar
  3. 3.
    Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD: Angiopoietins 3 and 4: Diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96: 1904-1909, 1999Google Scholar
  4. 4.
    Mezquita J, Mezquita B, Pau M, Mezquita C: Characterization of a novel form of angiopoietin-2 (Ang-2B) and expression of VEGF and angiopoietin-2 during chicken testicular development and regression. Biochem Biophys Res Commun 260: 492-498, 1999Google Scholar
  5. 5.
    Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8: 1897-1909, 1994Google Scholar
  6. 6.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y: Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70-74, 1995Google Scholar
  7. 7.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell 87: 1171-1180, 1996Google Scholar
  8. 8.
    Downward J: Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10: 262-267, 1998Google Scholar
  9. 9.
    Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG: Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18: 4131-4140, 1998Google Scholar
  10. 10.
    Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ: Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274: 30 896-30 905, 1999Google Scholar
  11. 11.
    Kwak HJ, So JN, Lee SJ, Kim I, Koh GY: Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448: 249-253, 1999Google Scholar
  12. 12.
    Kim I, Kim HG, So J-N, Kim JH, Kwak HJ, Koh GY: Angiopoietin-l regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Circ Res 86: 24-29, 2000Google Scholar
  13. 13.
    Fujikawa K, de Aos Scherpenseel I, Jam SK, Presman E, Varticovski L: Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253: 663-672, 1999Google Scholar
  14. 14.
    Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY: Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58: 224-237, 1999Google Scholar
  15. 15.
    Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC: Direct actions of angiopoietin-1 on human endothelium: Evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79: 213-223, 1999Google Scholar
  16. 16.
    Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC: Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275: 9102-9105, 2000Google Scholar
  17. 17.
    Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG: Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81: 567-574, 1997Google Scholar
  18. 18.
    Yuan HT, Suri C, Yancopoulos GD, Woolf AS: Expression of angiopoietin-1, angiopoietin-2, and the Tie-2 receptor tyrosine kinase during mouse kidney maturation. J Am Soc Nephrol 10: 1722-1736, 1999Google Scholar
  19. 19.
    Wilting J, Christ B: Embryonic angiogenesis: A review. Naturwissenschaften 83: 153-164, 1996Google Scholar
  20. 20.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM: Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273: 18 514-18 521, 1998Google Scholar
  21. 21.
    Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W: Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8: 529-532, 1998Google Scholar
  22. 22.
    Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83: 233-240, 1998Google Scholar
  23. 23.
    Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, Ahn BC, Koh GY: Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86: 952-959, 2000Google Scholar
  24. 24.
    Jones N, Dumont DJ: The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17: 1097-1108, 1998Google Scholar
  25. 25.
    Huang L, Turck CW, Rao P, Peters KG: GRB2and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11: 2097-2103, 1995Google Scholar
  26. 26.
    Han DC, Guan JL: Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem 274: 24 425-24 430, 1999Google Scholar
  27. 27.
    Yu DH, Qu CK, Henegariu O, Lu X, Feng GS: Proteintyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273: 21 125-21 131, 1998Google Scholar
  28. 28.
    Pawson T: Protein modules and signalling networks. Nature 373: 573-580, 1995Google Scholar
  29. 29.
    Jones N, Dumont DJ: Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of ErkMAPkinase activation. Curr Biol 9: 1057-1060, 1999Google Scholar
  30. 30.
    Nelms K, Snow AL, Hu-Li J, Paul WE: FRIP, a hematopoietic cell-specific rasGAP-interacting protein phosphorylated in response to cytokine stimulation. Immunity 9: 13-24, 1998Google Scholar
  31. 31.
    Kasus-Jacobi A, Perdereau D, Auzan C, Clauser E, Van Obberghen E, Mauvais-Jarvis F, Girard J, Burnol AF: Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem 273: 26 026-26 035, 1998Google Scholar
  32. 32.
    Reilly JF, Mickey G, Maher PA: Association of fibroblast growth factor receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. J Biol Chem 275: 7771-7778, 2000Google Scholar
  33. 33.
    Fachinger G, Deutsch U, Risau W: Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18: 5948-5953, 1999Google Scholar
  34. 34.
    Huang L, Sankar S, Lin C, Kontos CD, Schroff AD, Cha EH, Feng SM, Li SF, Yu Z, Van Etten RL, Blanar MA, Peters KG: HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274: 38 183-38 188, 1999Google Scholar
  35. 35.
    Vikkula M, Boon LM, Carraway KL, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR: Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2. Cell 87: 1181-1190, 1996Google Scholar
  36. 36.
    Calvert JT, Riney TJ, Kontos CD, Cha EH, Prieto VG, Shea CR, Berg JN, Nevin NC, Simpson SA, Pasyk KA, Speer MC, Peters KG, Marchuk DA: Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet 8: 1279-1289, 1999Google Scholar
  37. 37.
    Korpelainen EI, Karkkainen M, Gunji Y, Vikkula M, Alitalo K: Endothelial receptor tyrosine kinases activate the STAT signaling pathway: Mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18: 1-8, 1999Google Scholar
  38. 38.
    Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K: Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100: 2072-2078, 1997Google Scholar
  39. 39.
    Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG: Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc NatI Acad Sci USA 95: 8829-8834, 1998Google Scholar
  40. 40.
    Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marme D, Martiny-Baron G: Two independent mechanisms essential for tumor angiogenesis: Inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. Cancer Res 59: 3185-3191, 1999Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Nina Jones
    • 1
  • Daniel J. Dumont
    • 2
  1. 1.Division of Cancer Biology Research, Sunnybrook and Women's College Health Sciences Centre; Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Division of Cancer Biology Research, Sunnybrook and Women's College Health Sciences Centre; Toronto-Sunnybrook Regional Cancer Centre; Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations