Wetlands Ecology and Management

, Volume 8, Issue 6, pp 375–389 | Cite as

Dynamics of common reed (Phragmites australisTrin.) in Swiss fens with different management

  • Sabine Güsewell
  • Christophe Le Nédic
  • Alexandre Buttler


Dynamics of common reed (Phragmites australisTrin.) in Central Europe have so far mostly beeninvestigated in connection with studies on reed`die-back' along lake shores. However, there hasrecently been increasing concern about reed expansionat terrestrial sites, such as fens and wet grasslands.In this paper we report on the results of fourseparate studies which monitored reed dynamics inSwiss fens with various mowing regimes over a periodof 4 to 15 years. The first study compared unmownplots with plots mown in winter in a triennialrotation; the second one included unmown plots, plotsmown in summer, and plots mown in winter; the thirdone compared plots mown in June and September withplots only mown in September; the fourth studyinvestigated only plots mown in September. Shootnumber and shoot size were recorded in permanentquadrats. In all studies the performance of P.australisfluctuated without trend or tended todecrease during the period investigated. Thedecreasing tendency concerned shoot size rather thanshoot number, and within a given study it was strongerfor plots with initially taller shoots. The variousmowing regimes did hardly influence these changes.Mowing in winter every three years reduced shoot sizein the year after mowing, but not on the long term.Mowing every year in late summer reduced the shootsize compared with unmown plots on the short term, butthis effect almost disappeared on the long term, aftermowing had become biennial. Mowing in June (inaddition to in September) caused no noticeableeffects. We conclude that other factors (e.g. weatherconditions, competition, or population processes) aremore important than management in determining theabundance of P. australisin the fen communitiesinvestigated here, although long-term effects ofmowing in summer still need more investigation. As apractical consequence it is suggested that at siteswhich are not strongly dominated by P.australis, as most of those investigated here,reducing the performance of this species should notconstitute a major target of nature conservationmanagement, nor can its dynamics be used as anindicator for management success before underlyingcauses are better understood.

abundance fluctuations long-termstudies monitoring mowing permanent quadrats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bibby, C.J. and Lunn, J. 1982. Conservation of reedbeds and their avifauna in England and Wales. Biol Conservation 23: 167–186.Google Scholar
  2. Boar, R.R., Crook, C.E. and Moss, B. 1989. Regression of Phragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquat. Bot. 35: 41–55.Google Scholar
  3. Bressoud, B., Broggi, M.F., Hintermann, U., Grünig, A., Marti, K., Schlegel, H. and Theis, E. 1992. Anforderungen beim Schutz der Flachmoore von nationaler Bedeutung. In: (ed.) Handbuch Moorschutz in der Schweiz Band II, Beitrag 1.1.2. EDI, BUWAL, Bern.Google Scholar
  4. Briemle, G., Eickhoff, D. and Wolf, R. 1991. Mindestpflege und Mindestnutzung unterschiedlicher Grünlandtypen aus landschaftsökologischer und landeskultureller Sicht. Beih. Veröff. Naturschutz Landespflege Baden-Württ. 60: 1–158.Google Scholar
  5. Briemle, G. and Ellenberg, H. 1994. Zur Mahdverträglichkeit von Grünlandpflanzen. Natur Landschaft 69: 139–147.Google Scholar
  6. Brülisauer, A. and Klötzli, F. 1998. Habitat factors related to the invasion of reed (Phragmites australis) into wet meadows of the Swiss Midlands. Z. Ökol. Natursch. 7: 125–136.Google Scholar
  7. Buttery, B.R. and Lambert, J.M. 1965. Competition between Glyceria maxima and Phragmites communis in the region of Surlingham Broad. I. The competition mechanism. J Ecol 53: 163–181.Google Scholar
  8. Buttler, A. 1987. Etude écosystématique des marais non boisés de la rive Sud du lac de Neuchâtel (Suisse). Ph.D. thesis, Institut de botanique, University of Neuchâtel.Google Scholar
  9. Buttler, A. 1992. Permanent plot research in wet meadows and cutting experiment. Vegetatio 103: 113–124.Google Scholar
  10. Buttler, A., Buche, M., Cornali, P. and Gobat, J.-M. 1985. Historischer und ökologischer Ñberblick über das Südostufer des Neuenburger Sees. Telma 15: 31–42.Google Scholar
  11. Cízková, H., Strand, J.A. and Lukvaská, J. 1996. Factors associated with Reed Decline in a eutrophic Fishpond, Rozmberk (South Bohemia, Czech Republic). Folia Geobot. Phytotax. 31: 73–84.Google Scholar
  12. Cízková-Koncalová, H., Kvet, J. and Lukavská, J. 1996. Response of Phragmites australis, Glyceria maxima, and Typha latifolia to additions of piggery sewage in a flooded sand culture. Wetl. Ecol. Manag. 4: 43–50.Google Scholar
  13. Clevering, O.A. 1998. The effects of nitrogen supply on growth and morphology of different stable and die-back populations of Phragmites australis. Aquat. Bot. 60: 11–25.Google Scholar
  14. De Kroon, H. and Bobbink, R. 1997. Clonal plant dominance under elevated nitrogen deposition, with species reference to Brachypodium pinnatum in chalk grassland. In: De Koon, H. and Van Groenendael, J. (eds.), The Ecology and Evolution of Clonal Plants. pp. 359–379. Backhuys Publishers, Leiden.Google Scholar
  15. Fuchs, C. 1993. The beetle Donacia clavipes as possible cause for the local reed decline at Lake Constance (Untersee). In: Ostendorp, W. and Krumscheid-Plankert, P. (eds.), Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa. pp. 41–47. Gustav Fischer, Stuttgart, Jena, New York.Google Scholar
  16. George, M. 1992. The land use, Ecology and Conservation of Broadland. Packard Publishing, Chichester.Google Scholar
  17. Granéli, W. 1989. Influence of standing litter on shoot production in reed, Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany 35: 99–109.Google Scholar
  18. Granéli, W. 1990. Standing crop and mineral content of reed in Sweden - management of reed stands to maximize harvestable biomass. Folia Geobot. Phytotax. 25: 291–302.Google Scholar
  19. Gryseels, M. 1989a. Nature management experiments in a derelict reedmarsh. I. Effects of winter cutting. Biol. Conservation 47: 171–193.Google Scholar
  20. Gryseels, M. 1989b. Nature management experiments in a derelict reedmarsh. II. Effects of summer mowing. Biol. Conservation 48: 85–99.Google Scholar
  21. Güsewell, S. 1998. Does mowing in summer reduce the abundance of Phragmites australis in fen meadows? Bull. Geobot. Inst. ETH 64: 23–35.Google Scholar
  22. Güsewell, S. and Klötzli, F. 1997. Measuring the abundance of Phragmites communis Trin. in wet meadows: A methodological investigation. Bull. Geobot. Inst. ETH 63: 11–24.Google Scholar
  23. Güsewell, S. and Klötzli, F. 1998. Abundance of common reed (Phragmites australis), site conditions and conservation value of fen meadows in Switzerland. Acta Bot. Neerl. 47: 113–129.Google Scholar
  24. Güsewell, S., Buttler, A. and Klötzli, F. 1998. Short-term and longterm effects of management on the vegetation of two calcareous fens. J. Veg. Sci. 9: 861–872.Google Scholar
  25. Güsewell, S. and Edwards, P. 1999. Shading by common reed (Phragmites australis Trin.): a threat for species-rich fen meadows? Appl. Veg. Sci. 2: 61–70.Google Scholar
  26. Haslam, S.M. 1969. The development and emergence of buds in Phragmites communis. Annals of Botany 33: 289–301.Google Scholar
  27. Haslam, S.M. 1970. The performance of Phragmites communis Trin. in relation to water supply. Ann. Bot. 34: 867–877.Google Scholar
  28. Haslam, S.M. 1971. Community regulation in Phragmites communis. II. Mixed stands. J. Ecol. 59: 75–88.Google Scholar
  29. Haslam, S.M. 1972. Biological flora of the British Isles. Phragmites communis Trin. J. Ecol. 60: 585–610.Google Scholar
  30. Haslam, S.M. 1975. The performance of Phragmites communis Trin. in relation to temperature. Ann. Bot. 39: 881–888.Google Scholar
  31. Haslam, S.M. 1995. A discussion of the strength (durability) of thatching reed (Phragmites australis) in relation to habitat. Department of Plant Sciences, University of Cambridge, Cambridge.Google Scholar
  32. Hürlimann, H. 1951. Zur Lebensgeschichte des Schilfs an den Ufern der Schweizer Seen. Beiträge zur Geobotanischen Landesaufnahme der Schweiz 30: 1–232.Google Scholar
  33. Husák, S. 1978. Control of reed and reed mace stands by cutting. Ecol. Stud. 28: 404–408.Google Scholar
  34. Khattab, A.F. and El-Gharably, Z.A. 1990. Aquatic weeds and their effect on channel roughness. International Symposium on aquatic weeds 8: 145–149.Google Scholar
  35. Klötzli, F. 1971. Biogeneous influence on aquatic macrophytes, especially Phragmites communis. Hydrobiol. 12: 107–112.Google Scholar
  36. Klötzli, F. 1974. Ñber Belastbarkeit und Produktion in Schilfröhrichten. Verh. Ges. Ökol. 2: 237–247.Google Scholar
  37. Klötzli, F. 1986. Tendenzen zur Eutrophierung in Feuchtgebieten. Veröff. Geobot. Inst. ETH 87: 343–361.Google Scholar
  38. Klötzli, F. and Züst, S. 1973. Conservation of reed-beds in Switzerland. Pol. Arch. Hydrobiol. 20: 229–235.Google Scholar
  39. Kowarik, I. 1995. Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek, P., Prach, K., Rejmanek, M. and Wade, M. (eds.), Plant Invasions. General aspects and special problems. pp. 15–38. SPB Academic Publishing, Amsterdam.Google Scholar
  40. Krauss, M. 1993. Die Rolle des Bisams (Ondatra zibethicus) beim Röhrichtrückgang an der Berliner Havel. In: Ostendorp, W. and Krumscheid-Plankert, P. (eds.), Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa. pp. 49–60. Gustav Fischer, Stuttgart, Jena, New York.Google Scholar
  41. Krisch, H., Krauss, N. and Kahl, M. 1979. Der Einfluss von Schnitt und Frost auf Entwicklung und Biomasseproduktion der Phragmites-Röhrichte am Greifswalder Bodden. Folia Geobot. Phytotax. 14: 121–144.Google Scholar
  42. Krumscheid, P., H., S. and M., P. 1989. Decline of reed at Lake Constance (Obersee) since 1967 based on interpretations of aerial photographs. Aquat. Bot. 35: 57–62.Google Scholar
  43. Lauber, K. and Wagner, G. 1996. Flora Helvetica. Haupt, Bern.Google Scholar
  44. Marks, M., Lapin, B. and Randall, J. 1994. Phragmites australis (P. communis): threats, management and monitoring. Natural Areas Journal 14: 285–294.Google Scholar
  45. Mead, R. 1988. The Design of Experiments. Cambridge University Press, Cambridge.Google Scholar
  46. Mook, J.H. and Van der Toorn, J. 1982. The influence of environmental factors and management on stands of Phragmites australis II. Effects on yield and its relationships with shoot density. J. Appl. Ecol. 19: 501–517.Google Scholar
  47. Ostendorp, W. 1989. 'Die-back’ of reeds - a critical review of literature. Aquat. Bot. 35: 5–26.Google Scholar
  48. Ostendorp, W. 1991. Damage by episodic flooding to Phragmites reeds in a prealpine lake: proposal of a model. Oecologia 86: 119–124.Google Scholar
  49. Ostendorp, W. 1995. Effect of management on the mechanical resistance of lakeside reeds in Lake Constance. Acta Oecologica 16: 277–294.Google Scholar
  50. Rosenthal, G. 1992. Problempflanzen bei der Extensivierung von Feuchtwiesen. NNA-Ber. 5: 27–36.Google Scholar
  51. Stark, H. and Dienst, M. 1989. Dynamics of lakeside reed belts at Lake Constance (Untersee) from 1984 to 1987. Aquat. Bot. 35: 63–70.Google Scholar
  52. Szajnovski, F. 1973. Relationship between leaf area index and shoot production of Phragmites communis Trin. Pol. Arch. Hydrobiol. 20: 257–268.Google Scholar
  53. Tscharntke, T. 1988. Variability of the grass Phragmites australis in relation to the behaviour and mortality of the gall-inducing midge Giraudella inclusa (Diptera, Cecidomyiidae). Oecologia 76: 504–512.Google Scholar
  54. Van der Putten, W.H. 1997. Die-back of Phragmites australis in European wetlands: an overview of the European research programme on reed die-back and progression (1993-1994). Aquat. Bot. 59: 263–275.Google Scholar
  55. Van der Toorn, J. and Mook, J.H. 1982. The influence of environmental factors and management on stands of Phragmites australis I. Effects of burning, frost and insect damage on shoot density and shoot size. J. Appl. Ecol. 19: 477–499.Google Scholar
  56. Van Diggelen, R., Molenaar, W.J. and Kooijman, A.M. 1996. Vegetation succession in a floating mire in relation to management and hydrology. J. Vege. Sci. 7: 809–820.Google Scholar
  57. Wheeler, B.D. and Giller, K.E. 1982. Species richness of herbaceous fen vegetation in Broadland, Norfolk, in relation to the quantity of above-ground material. J. Ecol. 70: 179–200.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sabine Güsewell
    • 1
  • Christophe Le Nédic
    • 2
  • Alexandre Buttler
    • 3
  1. 1.Geobotanisches Institut ETH ZürichZürichSwitzerland
  2. 2.Groupe d'étude et de gestionGrande CariçaieYverdonSwitzerland
  3. 3.Institut de BotaniqueUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations