Astrophysics and Space Science

, Volume 274, Issue 1–2, pp 355–363 | Cite as

Impact Vaporization and Ionization of Cosmic Dust Particles

  • Klaus Hornung
  • Yuri G. Malama
  • Khaim S. Kestenboim


We report on theoretical efforts to understand the process of vaporization and ion formation upon hypervelocity impact of small cosmic dust particles on a solid surface. Such collisions occur at the surface of solid bodies within the planetary system, which do not have an atmosphere as well as in various actual and upcoming space missions for in-situ measurements of interplanetary, interstellar and cometary dust. The investigation uses Godunov's method to simulate the impact. For the very high velocitites investigated, the impacting dust particle as well as parts of the target vaporize and some of the vapor cloud may change to partially ionized. Numerical results of the impact process are communicated for an 80 kms-1impact of a slightly porous SiO2 particle on a compact SiO2surface. Values of the amount of vapor and liquid excavated from the target are given. Ionization rates are calculated for the example investigated and an estimate is given how this extrapolates to the highest conceivable velocities in the planetary system (above 100 km s-1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.E., Trucano, T.G. and Mullin, S.A.: 1990, Debris cloud dynamics, Int.J.Impact Engng 9 (1), 89.CrossRefGoogle Scholar
  2. Anisimov, S.I., Imas, Ya.A., Romanov, G.S. and Khodyko, Yu.V.: 1971, Effects of high-power radiation on metals, Nauka Publishing House, Moscow, 1970 (transl.: U.S. Departm. of Commerce, Natl. Tech. Inf. Service JPRS53241, 1971).Google Scholar
  3. Baranov, V.B. and Malama, Yu.G.: 1993, Model of the solar wind interaction with the local interstellar medium. Numerical solution of the self-consistent problem, J.Geophys.Res. 98 (A9), 15157–15163.ADSCrossRefGoogle Scholar
  4. Brownlee, D.E.: 1985, Cosmic dust: Collection and research, Ann.Rev.Earth Planet.Sci. 13, 147.CrossRefADSGoogle Scholar
  5. Colella, P. and Glaz, H.M.: 1985, Efficient solution algorithm for the Riemann problem for real gases, J.Comput.Phys. 59, 264.MATHMathSciNetCrossRefADSGoogle Scholar
  6. Drapatz, S. and Michel, K.W.: 1974, Theory of shock wave ionization upon high-velocity impact of micrometeorites, Z.Naturforschung 29 (a), 870.ADSGoogle Scholar
  7. Godunov, S.K., Zabrodin, V.A., Ivanov, M.L., Kraiko, A.N. and Prokopov, G.P.: 1976, Numerical Solution of Multidimensional Problems of Gasdynamics, Nauka, Moscow.Google Scholar
  8. Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svetska, J. and Taylor, A.: 1993, Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft, Nature 362, 428.CrossRefADSGoogle Scholar
  9. Hornung, K. and Kissel, J.: 1994, On shock wave impact ionization of dust particles, Astron.Astrophys. 291, 324.ADSGoogle Scholar
  10. Hornung, K., Malama, Yu.G. and Thoma, K.: 1996, Modeling of the very high velocity impact process with respect to in-situ ionization measurements, Adv.Space Res. 17 (12), 77.CrossRefADSGoogle Scholar
  11. Hornung, K. and Michel, K.W.: 1972, Equation of state data of solids from shock vaporization, J.Chem.Phys. 56, 2072.CrossRefADSGoogle Scholar
  12. Kalitkin, N.N. and Kuz'mina, L.V.: 1975, Tables of thermodynamic functions of a substance at high concentration of energy, preprint No. 35, Inst.Prik.Mat.Akad.Nauk SSSR, Moscow, 1975 (in Russian).Google Scholar
  13. Kissel, J.: 1993, Mass spectrometric in-situ analysis of solid state extraterrestrial samples, in: C.M. Pieters and P.A.J. Englert (eds.), Remote geochemical analysis: Elemental and mineralogical composition, Cambridge University Press N.Y., p. 557.Google Scholar
  14. Knabe, W. and Krueger, F.R.: 1982, Ion formation from Alkali Iodide solids by swift dust particle impact, Z.Naturforschung 37 (a), 1335.ADSGoogle Scholar
  15. Krueger, F.R.: 1996, Ion formation by high-and medium velocity dust impacts from laboratory measurements and Halley results, Adv.Space Res. 17 (12), 71.CrossRefADSGoogle Scholar
  16. Krüger, H., Krivov, A.V., Hamilton, D.P. and Grün, E.: 1999, Detection of an impact-generated dust cloud around Ganymede, Nature 399, 558, 10 June 1999.CrossRefADSGoogle Scholar
  17. Malama, Yu.G.: 1982, Numerical simulation of high-velocity impact on a semi-infinite target, Fluid Dyn. 17, 262.CrossRefGoogle Scholar
  18. Malama, Yu.G.: 1984, Numerical modelling of the high-velocity impact for different relationships between the impactor and target densities, Combustion, Explosion and Shock Waves 20, 465.CrossRefGoogle Scholar
  19. O'Keefe, J.D. and Ahrens. Th.J.: 1987, Impact on the earth, ocean and atmosphere, Int.J.Impact Engng 5, 13.CrossRefADSGoogle Scholar
  20. Raizer, Yu.P.: 1959, Residual ionization of a gas expanding in vacuum, JETP 37, 580.Google Scholar
  21. Ree, F.H.: 1976, Equation of state of the silicon dioxide system, Lawrence Livermore Laboratory, Report UCRL-52153.Google Scholar
  22. Roe, P.L.: 1981, Approximate Riemann solvers, parameter vectors and difference schemes, J.Comput.Phys. 43, 357.MATHMathSciNetCrossRefADSGoogle Scholar
  23. Sagdeev, R.Z., Evlanov, E.N., Fomenkova, M.N., Prilutskii, O.F. and Zubkov, B.V.: 1989, Small-size dust particles near Halley's Comet, Adv.Space Res. 9,3 (3), 263.CrossRefADSGoogle Scholar
  24. Utterback, N.G. and Kissel, J.: 1990, Atogram dust cloud a million kilometers from Comet Halley, Astron.J. 100 (4), 1315.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Klaus Hornung
    • 1
  • Yuri G. Malama
    • 2
  • Khaim S. Kestenboim
    • 2
  1. 1.University B.W. MuenchenGermany
  2. 2.Institute for Problems in Mechanics RASMoscowRussia

Personalised recommendations