Advertisement

Antonie van Leeuwenhoek

, Volume 78, Issue 2, pp 129–140 | Cite as

Screening of basidiomycetes for antimicrobial activities

  • Inmaculada Suay
  • Francisco Arenal
  • Francisco J. Asensio
  • Angela Basilio
  • M. Angeles Cabello
  • M. Teresa Díez
  • Juan B. García
  • Antonio González del Val
  • Julián Gorrochategui
  • Pilar Hernández
  • Fernando Peláez
  • M. Francisca Vicente
Article

Abstract

As a part of a screening programme developed to evaluate the antimicrobial activity of basidiomycetes, 317 isolates representing 204 species collected in Spain were screened against a range of human clinical pathogens and laboratory controls. Extracts from 45% of the isolates, representing 109 species, showed antimicrobial activity. Antibacterial activity was more pronounced than antifungal activity. The proportion of extracts from basidiomycetes showing antimicrobial activity was similar to or above that obtained for representative orders of Ascomycetes, such as Pezizales and Xylariales, but lower than that produced by members of the orders Diaporthales, Eurotiales, Hypocreales, Leotiales and Sordariales. Suprageneric taxa (orders and families) did not show pronounced differences in their antimicrobial activities though such differences were observed at the genus level, suggesting that the ability to produce these bioactive compounds is not homogenously distributed amongst the basidiomycetes. Isolates from some species showed large differences in their ability to produce metabolites with antimicrobial activity, possibly reflecting genetic differences at the infraspecific level.

antibacterial and antifungal activities basidiomycetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Obeid S, Collatz E & Gutman L (1990) Mechanism of resistance to vancomycin in Enterococcus faecium D.366 and Enterococcus faecalis A.256. Antimicrob. Agents Chemother. 34: 256–266Google Scholar
  2. Anke T (1985) Cytotoxic metabolites from basidiomycetes. In: Ebeshi S (Ed.) Cellular Regulation and Malignant Growth (pp. 169–176). Japan Sci. Soc. Press, TokyoGoogle Scholar
  3. Anke T (1989) Basidiomycetes: A source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 27: 51–66Google Scholar
  4. Anke T (1995) The antifungal strobilurins and their possible ecological role. Can. J. Bot. 73(suppl. 1): S940–S945Google Scholar
  5. Benedict RG & Brady LR (1972) Antimicrobial activity of mushroom metabolites. J. Pharm. Sci. 61: 1820–1822PubMedGoogle Scholar
  6. Breheret S, Talou T, Rapior S & Bessiere JM (1997) Monoterpenes in the aromas of fresh wild mushrooms (Basidiomycetes). J. Agric. Food Chem. 45: 831–836Google Scholar
  7. Brizuela MA, García L, Pérez L & Mansur M (1998) Basidiomicetos: nueva fuente de metabolitos secundarios. Rev. Iberoam.Mic. 15: 69–74Google Scholar
  8. Davis AJ & Stone JW (1986) Current problems of chemotherapy of infections with coagulase-negative staphylococci. Eur. J. Clin. Microbiol. 5: 277–281PubMedGoogle Scholar
  9. Dreyfuss MM & Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (Ed.) The Discovery of Natural Products with Therapeutical Potential (pp. 49–80). Butterworth-Heinemann, Stoneham, MAGoogle Scholar
  10. Florey HW, Chain W, Heatley NG, Jennings MA, Sanders AG, Abraham EP & Florey ME (1949) Antibiotics. Oxford University Press, LondonGoogle Scholar
  11. Hautzel R & Anke T (1990) Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibberellic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Z. Naturforsch. 45c: 1093–1098Google Scholar
  12. Hawksworth DL, Kirk PM, Sutton BC & Pegler DN (1995) Ainsworth & Bisby's Dictionary of the Fungi (8th Ed.) CAB International: Kew, UKGoogle Scholar
  13. Heim R (1963) Les Champignons Toxiques et Hallucinogenes, N. Boubee & Cie., ParísGoogle Scholar
  14. Janssens L, De Pooter HL, Schamp NM & Vandamme EJ (1992) Production of flavours by microorganisms. Proc. Biochem. 27: 195–215Google Scholar
  15. Kavanagh F, Hervey A & Robbins WJ (1952) Antibiotic substances from basidiomycetes. IX Drosophila subtarata (Batsch ex Fr). Quel. Proc. Natl. Acad. Sci. U.S. 38: 555–560Google Scholar
  16. Korzybski T, Kowszyk-Gindifer Z & Kurylowicz W (1967) Antibiotics. Origin, Nature and Properties. Pergamon Press, OxfordGoogle Scholar
  17. Kupka J, Anke T, Oberwinkler G, Schramn G & Steglich W (1979) Antibiotics from basidiomycetes. VII. Crinipellis stipitaria (Fr.) Pat. J. Antibiot. 32: 130–135Google Scholar
  18. Löfgren N, Lüning B & Hedström H (1954) The isolation of nebularine and the determination of its structure. Acta Chem. Scand. 8: 670–680Google Scholar
  19. Marumoto R, Klostermeyer D, Steglich W, Wunder A & Anke T (1997) Phlebiachrysoic acids, new inhibitors of leukotriene biosynthesis from Phlebia chrysocrea (Basidiomycete). Leibigs Annalen-Recueil. 2: 313–316Google Scholar
  20. Möller C, Weber G & Dreyfuss MM (1997) Intraspecific diversity in the fungal species Chaunopycnis alba: implications for microbial screening programs. J. Ind. Microbiol. Biotech. 17: 359–372Google Scholar
  21. Peláez F, Collado J, Arenal F, Basilio A, Cabello MA, Díez MT, García JB, González del Val A, González V, Gorrochategui J, Hernández P, Martín I, Platas G & Vicente F (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol. Res. 102: 755–761Google Scholar
  22. Polak A & Hartman PG (1991) Antifungal chemotherapy. Are we winning? Prog. Drug Res. 37: 183–257Google Scholar
  23. Sunderam G, McDonald RJ, Maniatis T, Oleske J, Kapilar R & Reichman LB (1986) Tuberculosis as a manifestation of the acquired inmunodeficiency syndrome (AIDS). J. Am. Med. Assoc. 256: 362–366Google Scholar
  24. Vartivarian SE, Anaissie EJ & Bodey GP (1993) Emerging fungal pathogens in immunocompromisedpatients: classification, diagnosis and management. Clin. Infect. Dis. 17, Supplement. 2: S.487–S.491Google Scholar
  25. Woodward S, Sultan HY, Barrett DK & Pearce RB (1993) Two new antifungal metabolites by Sparassis crispa in culture and in decayed trees. J. Gen. Microbiol. 139: 153–159Google Scholar
  26. Worrall JJ (1991) Media for selective isolation of hymenomycetes. Mycologia 83: 296–302Google Scholar
  27. Zak O (1980) Antibiotics and Pseudomonas aeruginosa. In: Sabath LD (Ed.) Pseudomonas aeruginosa (pp. 133–159). Hans Huber: Berna, CHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Inmaculada Suay
    • 1
  • Francisco Arenal
    • 1
  • Francisco J. Asensio
    • 1
  • Angela Basilio
    • 1
  • M. Angeles Cabello
    • 1
  • M. Teresa Díez
    • 1
  • Juan B. García
    • 1
  • Antonio González del Val
    • 1
  • Julián Gorrochategui
    • 1
  • Pilar Hernández
    • 1
  • Fernando Peláez
    • 1
  • M. Francisca Vicente
    • 2
  1. 1.Centro de Investigación BásicaMerck Sharp & Dohme de España S.A.MadridSpain
  2. 2.Centro de Investigación BásicaMerck Sharp & Dohme de España S.A.MadridSpain

Personalised recommendations