Skip to main content
Log in

Ozone: a tool for probing programmed cell death in plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, R.M., Rosenzweig, C., Peart, R.M., Ritchie, J.T., McCarl, B.A., Glyer, J.D., Curry, R.B., Jones, J.W., Boote, K.J. and Allen, L.H. Jr. 1990. Global climate change and US agriculture. Nature 345: 219–224.

    Google Scholar 

  • Allen, L.J., MacGregor, K.B., Koop, R.S., Bruce, D.H., Karner, J. and Brown, A.W. 1999. The relationship between photosynthesis and a mastoparan induced hypersensitive response in isolated mesophyll cells. Plant Physiol. 119: 2133–1241.

    Google Scholar 

  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A. and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773–784.

    Google Scholar 

  • Amor, Y., Babiychuk, E., Inzé, D. and Levine, A. 1998. The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett. 440: 1–7.

    Google Scholar 

  • Bae, G.Y., Nakajima, N., Ishizuka, K. and Kondo, N. 1996. The role in ozone phytotoxicity of the evolution of ethylene upon induction of 1-aminocyclopropane-1-carboxylic acid synthase by ozone fumigation in tomato plants. Plant Cell Physiol. 37: 129–134.

    Google Scholar 

  • Bent, A.F., Innes, R.W., Ecker, J.R. and Staskawicz, B.J. 1992. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol. Plant-Microbe Interact. 5: 372–378.

    Google Scholar 

  • Bolwell, G.P. 1999. Role of active oxygen species and nitric oxide in plant defense responses. Curr. Opin. Plant Biol. 2: 287–294.

    Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J.D., Voko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57–63.

    Google Scholar 

  • Castillo, F.J. and Heath, R.L. 1990. Ca2+ transport in membrane vesicles from pinto bean leaves and its alteration after ozone exposure. Plant Physiol. 94: 788–795.

    Google Scholar 

  • Chameides, W.L., Kasibhata, P.S., Yienger, J. and Levy, H. 1994. Growth of continental-scale metroagro-plexes, regional ozone pollution and world food production. Science 264: 74–77.

    Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann Jr., H., Van Montagu, M., Inzé, D. and Van Camp, W. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95: 5818–5823.

    Google Scholar 

  • Chapmann, K.D. 1998. Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci. 11: 419–426.

    Google Scholar 

  • Clayton, H., Knight, M.R., Knight, H., McAinsh, M.R. and Hetherington, A.M. 1999. Dissection of ozone-induced calcium signature. Plant J. 17: 575–579.

    Google Scholar 

  • Conklin, P.L., Williams, E.H. and Last, R.L. 1996 Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA. 93: 9970–9974.

    Google Scholar 

  • Creelman, R.A. and Mullet, J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355–381.

    Google Scholar 

  • Croft, P.C., Juttner, F. and Slusarenko, A.J. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris L. leaves inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiol. 101: 13–24.

    Google Scholar 

  • D'Silva, I., Poirier, G.G. and Heath, M.C. 1998. Activation of cysteine proteases in cowpea plants during the hypersensitive response: a form of programmed cell death. Exp. Cell Res. 245: 389–399.

    Google Scholar 

  • Danon, A. and Gallois, P. 1998. UV-C radiation induces apoptoticlike changes in Arabidopsis thaliana. FEBS Lett. 437: 131–136.

    Google Scholar 

  • Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant Cell Envir. 12: 1–39.

    Google Scholar 

  • Delledonne, M.A., Xia, Y., Dixon, R.A. and Lamb, C.J. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588.

    Google Scholar 

  • Desikan, R., Reynolds, A., Hancock, J.T. and Neil, S.J. 1998. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cultures. Biochem. J. 330: 115–120.

    Google Scholar 

  • Doke, N. 1997. The oxidative burst: roles in signal transduction and plant stress. In. J.G. Scandalios (Ed.) Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 785–814.

    Google Scholar 

  • Dong, X. 1998. SA, JA, ethylene and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–323.

    Google Scholar 

  • Draper, J. 1997. Salicylate, superoxide synthesis and cell suicide in plant defense. Trends Plant Sci. 2: 162–165.

    Google Scholar 

  • Durner, J., Shah, J. and Klessig, D.F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2: 266–274.

    Google Scholar 

  • Durner, J., Wendehenne, D. and Klessig, D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328–10333.

    Google Scholar 

  • Ernst, D., Schraudner, M., Langebartels, C. and Sandermann, H. 1992. Ozone-induced changes of mRNA levels of β-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco. Plant Mol. Biol. 20: 673–682.

    Google Scholar 

  • Fishman, J., Vukovich, F.M. and Browell, E.V. 1985. The photochemistry of synoptic-scale ozone synthesis: implications for the global ozone budget. J. Atm. Chem. 3: 299–320.

    Google Scholar 

  • Gallois, P., Makishima, T., Hecht, V., Despress, B., Laudie, M., Nishimotot, T. and Cooke, R. 1997. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J. 11: 1325–1331.

    Google Scholar 

  • Gray, J., Close, P.S., Briggs, S.P. and Johal, G.S. 1997. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89: 25–31.

    Google Scholar 

  • Greenberg, J.T. 1997. Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 525–545.

    Google Scholar 

  • Hammond-Kossack, K.E. and Jones, J.D.G. 1996. Resistance genedependent plant defense responses. Plant Cell 8: 1773–1791.

    Google Scholar 

  • He, C.-J., Morgan, P.W. and Drew, M.C. 1996. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112: 463–472.

    Google Scholar 

  • Heagle, A.S. 1989. Ozone and crop yield. Annu. Rev. Phytopathol. 27: 397–423.

    Google Scholar 

  • Heath, R.L. 1987. The biochemistry of ozone attack on the plasma membrane of plant cells. Rec. Adv. Phytochem. 21: 29–54.

    Google Scholar 

  • Heath, R.L. and Taylor, G.E. 1997. Physiological processes and plant responses to ozone exposure. In: H. Sandermann, A. Wellburn and R.L. Heath (Eds.) Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments. Ecological Studies Vol. 127, Springer-Verlag, Berlin, pp. 317–368.

    Google Scholar 

  • Heiden, A.C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D., Langebartels, C., Mehlhorn, H., Sandermann H. Jr., Schraudner, M., Schuh, G. and Wildt, J. 1999. Emission of volatile organic compounds from ozone-exposed plants. Ecol. Appl. (in press).

  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57: 231–245.

    Google Scholar 

  • Jabs, T., Dietrich, R.A. and Dangl, J. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.

    Google Scholar 

  • Jabs, T., Tschope, M., Colling, C., Hahlbrock, K. and Schell, D. 1997. Elicitor-stimulated ion fluxes and O -2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94: 4800–4805.

    Google Scholar 

  • Jacobson, M.D., Weil, M. and Raff, M.C. 1997. Programmed cell death in animal development. Cell 88: 347–354.

    Google Scholar 

  • Kangasjarvi, J., Talvinen, J., Utriainen, M. and Karjalainen, R. 1994. Plant defense systems induced by ozone. Plant Cell Envir. 17: 783–794.

    Google Scholar 

  • Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G. and Mullineaux, P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657.

    Google Scholar 

  • Kanofsky, G. and Sima, H. 1995. Singlet oxygen generation from the reaction of O3 with plant leaves. J. Biol. Chem. 270: 7850–7852.

    Google Scholar 

  • Kettunen, P., Overmyer, K. and Kangasjarvi, J. 1999. The role of ethylene in the formation of cell damage during ozone stress. Does ozone induced cell death require concomitant AOS and ethylene production. In: A. Kanellis, C. Chang, H. Klee, A.B. Bleecker, J.C. Pech and D. Grierson (Eds.) Biology and Biotechnology of the Plant Hormone Ethylene vol. II, Kluwer Academic Publishers, Dordrecht, Netherlands (in press).

    Google Scholar 

  • Kieber, J.J. 1997. The ethylene response pathway in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 277–296.

    Google Scholar 

  • Kiiskinen, M., Korhonen, M. and Kangasjarvi, J. 1997. Isolation and characterization of a cDNA for a plant mitochondrial phosphate translocator Mpt1: O3 stress induces MPT1 mRNA accumulation in birch Betula pendula Roth. Plant Mol. Biol. 35: 271–279.

    Google Scholar 

  • Koch, J.R., Scherzer, A.J., Eshita, S.M. and Davis, K.R. 1998. Ozone sensitivity in hybrid poplar is correlated with the lack of defense gene activation. Plant Physiol. 118: 1243–1252.

    Google Scholar 

  • Koch, J.R., Creelman, J.A., Eshita, S.M., Seskar, M., Mullet, J. and Davis, K.R. 2000. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid: the role of programmed cell death in lesion formation. Plant Physiol. 123, 1–10.

    Google Scholar 

  • Koukalova, B., Kovarik, A., Fajkus, J. and Siroky, J. 1997. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett. 414: 289–292.

    Google Scholar 

  • Krupa, S.V. and Kickert, R.N. 1989. The greenhouse effect: the impacts of carbon dioxide CO2, ultraviolet-B UV-B radiation and ozone O3 on vegetation. Envir. Pollut. 61: 263–293.

    Google Scholar 

  • Krupa, S.V., Grunhage, L., Jager, H.-J., Nosal, M., Manning, W.J., Legge, H. and Hanewald, K. 1995. Ambient ozone O3 and adverse crop response: a unified view of cause and effect. Envir. Pollut. 87: 119–126.

    Google Scholar 

  • Laisk, A., Kull, O. and Moldau, H. 1989. Ozone concentration in leaf intracellular spaces is close to zero. Plant Physiol. 90: 1163–1167.

    Google Scholar 

  • Lamb, C. and Dixon, R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251–275.

    Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Google Scholar 

  • Lund, S., Stall, R. and Klee, H. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371–382.

    Google Scholar 

  • Mehlhorn, H., O'Shea, J.M. and Wellburn, A.R. 1991. Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. Plant Cell Envir. 13: 971–976.

    Google Scholar 

  • Mudd, J.B. 1997. Biochemical basis for the toxicity of ozone. In: M. Yunus and M. Iqbal (Eds.) Plant Response to Air Pollution, Wiley, New York, pp. 267–284.

    Google Scholar 

  • Naton, B., Hahlbrock, K. and Schmelzer, F. 1996. Correlation of rapid cell death with metabolic changes in fungus-infected, cultured parsley cells. Plant Physiol. 112: 433–444.

    Google Scholar 

  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related PR protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500–507.

    Google Scholar 

  • Orozco-Cardenas, M. and Ryan, C.A. 1999. Hydrogen peroxide is generated systematically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96: 6553–6557.

    Google Scholar 

  • Orvar, B.L., McPherson, J. and Ellis, B.E. 1997. Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J. 11: 203–212.

    Google Scholar 

  • Orzaez, D. and Grannel, A. 1997. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J. 11: 137–144.

    Google Scholar 

  • Overmyer, K., Kangasjarvi, J., Kuittinen, T. and Saarma, M. 1998. Gene expression and cell death in ozone-exposed plants: is programmed cell death involved in ozone damage in ozone-sensitive Arabidopsis mutants. In:. L.J. DeKok and I. Stulen (Eds.) Responses of PlantMetabolism to Air Pollution and Global Change, Backhuys Publishers, Leiden, Netherlands, pp. 403–406.

    Google Scholar 

  • Pare, P.W. and Tumilson, J.H. 1997. Induced synthesis of plant volatiles. Nature 385: 30–31.

    Google Scholar 

  • Pauls, K.P. and Thompson, J.E. 1980. In vitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation. Nature 283: 504–506.

    Google Scholar 

  • Pell, E.J., Schlagnhaufer, C.D. and Arteca, R.N. 1997. Ozoneinduced oxidative stress: mechanisms of action and reaction. Physiol. Plant. 100: 264–273.

    Google Scholar 

  • Pellinen R., Palva T. and Kangasjarvi J. 1999. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J. 20: 349–356.

    Google Scholar 

  • Penninckx, I.A.M.A., Eggermont, K., Terras, F.R.G., Thomma, B.P.H.J., De Samblanx, G.W., Buchala, A., Metraux, J.P., Manners, J.M. and Broekaert, W.F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323.

    Google Scholar 

  • Prasad, T.K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J. 10: 1017–1026.

    Google Scholar 

  • Preston, E.M. and Tingey, D.T. 1988. The NCLAN program for crop loss assessment. In: W.W. Heck (Ed.), Assessment of crop loss from air pollution, Elsevier Applied Science Publishers, London, pp. 45–62

    Google Scholar 

  • Rao, M.V. and Davis, K.R. 1999. Ozone-induced cell death occurs via two distinct mechanisms. The role of salicylic acid. Plant J. 16: 603–614.

    Google Scholar 

  • Rao, M.V., Paliyath, G. and Ormrod, D.P. 1996. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110: 125–136.

    Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P. and Watkins, C.B. 1997. Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol. 115: 137–149.

    Google Scholar 

  • Rao, M.V., Lee, H.-iL., Creelman, R.A., Mullet, J.E. and Davis, K.R. 2000. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 12 (in press).

  • Reich, P.B. and Amundson, R.G. 1985. Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230: 566–570.

    Google Scholar 

  • Richards, B.L., Middleton, J.T. and Hewitt, W.B. 1958. Air pollution with relation to agronomic crops. V. Oxidant stipple of grape. Agron. J. 50: 599–561.

    Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R. and Gardner, R.C. 1998. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116: 409–418.

    Google Scholar 

  • Runeckles, V.C. and Vaartnou, M. 1997. EPR evidence for superoxide anion formation in leaves during exposure to low levels of ozone. Plant Cell Envir. 20: 306–314.

    Google Scholar 

  • Ryals, J., Weyman, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P. and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor Iκ; B. Plant Cell 9: 425–439.

    Google Scholar 

  • Sandermann, H. Jr., Ernst, D., Heller, W. and Langebartles, C. 1998. Ozone: an abiotic elicitor of plant defense reactions. Trends Plant Sci. 3: 47–50.

    Google Scholar 

  • Scandalios, J.G. 1997. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schraudner, M., Moeder, W., Wiese, C., Van Camp, W., Inzé, D., Langebartels, C. and Sandermann, H. Jr. 1998. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J. 16: 235–245.

    Google Scholar 

  • Shah, J., Kachroo, P. and Klessig, D.F. 1999. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11: 191–206.

    Google Scholar 

  • Sharma, Y.K. and Davis, K.R. 1994. Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol. 105: 1089–1096.

    Google Scholar 

  • Sharma, Y.K. and Davis, K.R. 1997. The effects of ozone on antioxidant responses in plants. Free Rad. Biol. Med. 23: 480–488.

    Google Scholar 

  • Sharma, Y.K., Leon, J., Raskin, I. and Davis, K.R. 1996. Ozone-induced expression of stress-related genes in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defenserelated transcripts and induced resistance. Proc. Natl. Acad. Sci. USA 93: 5099–5104.

    Google Scholar 

  • Shirasu, K., Nakajima, H., Rajashekar, K., Dixon, R.A. and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270.

    Google Scholar 

  • Shulaev, V., Silverman, P. and Raskin, I. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385: 718–721.

    Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, E. and Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor gene in the regulation of programmed cell death in plants. Plant Cell 11: 431–443.

    Google Scholar 

  • Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B. and Mackerness, S.A.H. 1998. Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Envir. 21: 685–694.

    Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A. and Broekaert, W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95: 15107–15111.

    Google Scholar 

  • Thulke, O. and Conrath, U. 1998. Salicylic acid has a dual role in the activation of defense related genes in parsley. Plant J. 14: 35–42.

    Google Scholar 

  • Tuomainen, J., Betz, C., Kangasjarvi, J., Ernst, D., Yin, Z.H., Langebartles, C. and Sandermann, H. Jr. 1997. Ozone induction of ethylene emission in tomato plants: regulation by differential transcript accumulation for the biosynthetic enzymes. Plant J. 33: 1151–1162.

    Google Scholar 

  • Vahala, J., Schlagnhaufer, C.D. and Pell, E.J. 1998. Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol. Plant. 103: 45–50.

    Google Scholar 

  • Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J. and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7209–7214.

    Google Scholar 

  • Weiss, J. 1935. Investigations on the radical HO2 in solution. Trans. Faraday Soc. 31: 668–681.

    Google Scholar 

  • Wellburn, F.A.M. and Wellburn, A.R. 1996. Variable patterns of antioxidant protection but similar ethene emission differences in several ozone-sensitive and ozone-tolerant plant selections. Plant Cell Envir. 19: 754–760.

    Google Scholar 

  • Weymann, K., Hunt, M., Uknes, U., Neuenschwander, U., Lawton, K. and Ryals, J. 1995. Suppression and restoration of lesions formation in Arabidopsis lsd mutants. Plant Cell 7: 2013–2022.

    Google Scholar 

  • Young, T.E., Gallie, D.R. and DeMason, D.A. 1997. Ethylenemediated programmed cell death during maize endosperm development of wild type and shrunken2 genotypes. Plant Physiol. 115: 737–751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, M.V., Koch, J.R. & Davis, K.R. Ozone: a tool for probing programmed cell death in plants. Plant Mol Biol 44, 345–358 (2000). https://doi.org/10.1023/A:1026548726807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026548726807

Navigation