Marine Geophysical Researches

, Volume 21, Issue 5, pp 423–450

Recent tectonics of the Blanco Ridge, eastern blanco transform fault zone

  • Robert P. Dziak
  • Christopher G. Fox
  • Robert W. Embley
  • John L. Nabelek
  • Jochen Braunmiller
  • Randolph A. Koski
Article

Abstract

Bathymetric, hydro-acoustic, seismic, submersible, and gravity data are used to investigate the active tectonics of the eastern Blanco Transform Fault Zone (BTFZ). The eastern BTFZ is dominated by the ∼150 km long transform-parallel Blanco Ridge (BR) which is a right-lateral strike-slip fault bordered to the east and west by the Gorda and Cascadia Depressions. Acoustic locations, fault-parameter information, and slip vector estimates of 43 earthquakes (Mw≥3.8) that occurred along the eastern BTFZ over the last 5 years reveal that the Blanco Ridge is a high-angle right-lateral strike-slip fault, with a small component of dip-slip motion, where the Juan de Fuca plate is the hanging wall relative to the Pacific plate. Furthermore, the Cascadia and Gorda basins are undergoing normal faulting with extension predominantly oblique to the transform trend. Seafloor submersible observations agree with previous hypotheses that the active transform fault trace is the elongate basin that runs the length of the BR summit. Brecciated and undeformed basalt, diabase, and gabbro samples were collected at the four submersible survey sites along the Blanco Ridge. These petrologic samples indicate the Blanco Ridge is composed of an ocean crustal sequence that has been uplifted and highly fractured. The petrologic samples also appear to show an increase in elevation of the crustal section from east to west along the Blanco Ridge, with gabbros exposed at a shallower depth farther west along the southern (Pacific plate side) BR ridge flank. Further supporting evidence for BR uplift exists in the seismic reflection profiles across the BR showing uplift of turbidite sequences along the north and south ridge base, and gravity and magnetics profiles that indicate possible basement uplift and a low-density zone centered on the ridge's Pacific plate side. The BR formation mechanism preferred here is first, uplift achieved partially through strike-slip motion (with a small dip-slip component). Second, seawater penetration along the fault into the lower crust upper mantle, which then enhanced formation and intrusion of a mantle-derived serpentinized-peridotite diapir into the shallow ocean crust, causing further uplift along the fault.

Blanco transform fault zone earthquakes ridge formation submersible 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, L.J., Detrick, R.S. and Fox, P.J., 1988. Morphology and crustal structure of the Kane fracture zone transverse ridge, J. Geophys. Res. 93: 3195–3210.Google Scholar
  2. Aki, K. and Richards, P.G., 1980. Quantitative Seismology, Theory and Methods, W.H. Freeman and Company, New York.Google Scholar
  3. Batiza, R. and Vanko, D., 1983. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific rise inferred from narrow beam echo sounder surveys, Marine Geology 54: 53–90.Google Scholar
  4. Bibee, L. D., 1986. Ocean Bottom Seismometer Measurements on the Gorda Ridge. Open-File Report O–86–15, State of Oregon Dept. of Geology and Mineral Industries, 25 pp.Google Scholar
  5. Bergman, E.A. and Solomon, S.C., 1988. Transform fault earthquakes in the North Atlantic: source mechanism and depth of faulting, J. Geophys. Res. 93: 9027–9057.Google Scholar
  6. Bonatti, E., 1976. Serpentinite intrusions in the oceanic crust, Earth Plan. Sci. Letts., 32: 107–113.Google Scholar
  7. Bonatti, E., 1978. Vertical tectonism in oceanic fracture zones, Earth Planet. Sci. Lett. 78: 420–426.Google Scholar
  8. Braunmiller, J., Leitner, B. and Nabelek, J., 1994. Monitoring Seismic Activity alongthe Blanco Fracture Zone with Regional Broad-Band Data, Eos, Trans. Amer. Geophys. Union 75: 476.Google Scholar
  9. Clague, D.A. and Holmes, M.L., 1987. Geology, petrology, and mineral potential of the Gorda Ridge, in Sholl, D.W., Grantz, A. and Vedder, J.G. (eds.), Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins-Beaufort Sea to Baja California, Circum-PacificCouncil for Energy and Mineral Resources Earth Science Series Vol. 6: 563–580.Google Scholar
  10. Craig, C.H. and MacKenzie, D., 1986. The Existence of a Thin, Low Viscosity Layer Beneath the Lithosphere. Earth Planet Sci Lett. 78: 420–426.Google Scholar
  11. deCharon, A.V., 1988. Structure and Tectonics of the Cascadia Segment, Central Blanco Transform Fault Zone, M.S. Thesis, Oregon State University, Corvallis, Oregon.Google Scholar
  12. DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1990. Current plate motions, Geophys. J. Int. 101: 425–478.Google Scholar
  13. Dziak, R.P., Fox, C.G. and Embley, R.W., 1991. Relationship between the seismicity and geologic structure of the Blanco Transform Fault Zone, Mar. Geophys. Res. 13: 203–208.Google Scholar
  14. Dziak, R.P., Fox, C.G., Embley, R.W., Lupton, J.L., Johnson, G.C., Chadwick, W.W., Koski, R.A., 1996. Detection of and response to a probable volcanogenic T-wave event swarm on the western Blanco Transform Fault Zone, Geophys. Res. Lett. bf 23: 873–876.Google Scholar
  15. Embley, R.W., 1985. A locally formed deep-ocean canyon system along the Blanco Transform, Geo-Marine Lett. 5: 99–104.Google Scholar
  16. Embley, R.W., Kulm, L.D., Massoth, G., Abbott, D. and Holmes, M., 1987. Morphology, structure, and resource potential of the Blanco Transform Fault Zone, In Sholl, D.W., Grantz, A. and Vedder, J.G., (eds.), Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins – Beaufort Sea to Baja California, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Vol. 6, pp. 549–562.Google Scholar
  17. Embley R.W. and Wilson, D.S., 1992. Morphology of the Blanco Transform Fault Zone – NE Pacific: implications for its tectonic evolution. Mar. Geophys. Res. 14: 25–45.Google Scholar
  18. Epp, D., 1984. Possible perturbations to hotspot traces and implications for the origin and structure of the line islands, J. Geophys. Res. 89: 11273–11286.Google Scholar
  19. Fisk, M.R., Duncan, R.A., Fox, C.G. and Witter, J.B., 1993. Emergence and petrology of the Mendocino Ridge, Mar. Geophys. Res. 15: 283–296.Google Scholar
  20. Fox, C.G., Dziak, R.P., Matsumoto, H. and Schreiner, A.E., 1994. Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using fixed hydrophone arrays, Mar. Tech. Soc. 27: 22–30.Google Scholar
  21. Francis, T.J.G., 1981. Serpentinization faults and their role in the tectonics of slow spreading ridges, J. Geophys. Res. 86: 11616–11622.Google Scholar
  22. Griggs, G.B. and Kulm, L.D., 1973. Origin and development of cascadia deep-sea channel, J. Geophys. Res. 9: 6325–6339.Google Scholar
  23. Hart, R., Pyle, D. and Robbins; J., 1990. Multistage hydrothermal systems in the Blanco Fracture Zone, In McMurray, G.R. (ed.), Gorda Ridge, Seafloor Spreading Center in the United States' Exclusive Economic Zone, Springer-Verlag, New York, pp. 51–76.Google Scholar
  24. Hekinian, R., Bideau, D., Cannat, M., Francheteau, J. and Hebert, R., 1992. Volcanic activity and crust-mantle exposure in the ultrafast garret transform fault near 13280 S in the Pacific, Earth Planet Sci Lett. 108: 259–275.Google Scholar
  25. Ibach, D.H. 1981. The Structure and Tectonics of the Blanco Fracture Zone. M.S.Thesis, Oregon State University, Corvallis, Oregon, 60 pp.Google Scholar
  26. Ihmle, P.F. and Jordan, T.H., 1994. Teleseismic search for slow precursors to large earthqaukes, Science 266: 1547–1551.Google Scholar
  27. Kastens, K.A., MacDonald, K.C. and Becker, K., 1979. The Tamayo transfrom fault in the mouth of the Gulf of California, Mar Geophys. Res. 4: 129–151.Google Scholar
  28. Kastens, K.A., Ryan, W.B.F. and Fox, P.J., 1986. Structural and volcanic expression of a fast slipping ridge-transform-ridge plate boundary: sea Marc I and photographic surveys at the Clipperton transform fault, J. Geophys. Res. 91: 3469–3488.Google Scholar
  29. Koski, R.A., Embley, R.W., Ross, S.L., Dziak, R.P., Bohannon, R.G., Smith, V.K., Reid, J.A., Gray, L.B. and Tormanen, T.O., 1994. Tectonism and lithologic variation along the Blanco Ridge, Eastern Blanco Fracture Zone, NE Pacific: preliminary results from the PACNORWEST III cruise, Eos, Trans. Amer. Geophys. Union 75: 656.Google Scholar
  30. Lonsdale, P., 1985. Non-transform offsets of the Pacific-Cocos plate boundary and their traces on the rise flank, Geo. Soc. Amer. Bull. 96: 313–329.Google Scholar
  31. Macdonald, K.C., Fox, P.J., Alexander, R. T., Pockalny, R. and Gente, P., 1996. Volcanic growth faults and the origin of Pacific Abyssal Hills, Nature 380: 125–129.Google Scholar
  32. McDonald, M.A., Webb, S.C., Hildebrand, J.A. and Cornuelle, B.D., 1994. Seismic structure and anisotropy of the Juan de Fuca Ridge at 45° N, J. Geophys. Res. 99: 4857–4873.Google Scholar
  33. Mount, V.S. and Suppe, J., 1992. Present-day stress orientations adjacent to active strike-slip faults: California and Sumatra, J. Geophys. Res. 97: 11995–12013.Google Scholar
  34. Nabelek, J. and Xia, G., 1995. Regional and teleseismic analysis of the 29 March, 1993. Scotts Mills, Oregon, earthquake, Geophys. Res. Lett. 22: 13–16.Google Scholar
  35. National Earthquake Information Center, 1992. Preliminary Determination ofEpicenters Catalog, October.Google Scholar
  36. Oppenheimer, D.H., Reasonberg, P.A. and Simpson, R.W., 1988. Fault plane solutions for the 1984 Morgan Hill, California earthquake sequence: evidence for the state of stress on the Calaveras Fault, J. Geophys. Res. 92: 421–439.Google Scholar
  37. Pockalny, R.A., Fox, P.J., Fornari, D.J., Macdonald, K.C. and Perfit, M.R., 1997. Tectonic reconstructions of the Clipperton and Siqueiros Fracture Zones: evidence and consequences of plate motion change for the last 3 Myr. J. Geophys. Res. 102: 3167–3181.Google Scholar
  38. Riddihough, R.P., Seemann, D.A. and Price, W.R., 1982. Juan de Fuca Plate Map: JFP-8 Gravity Anomaly. Earth Physics Branch: Department of Energy, Mines, and Resources, Ottawa, Canada.Google Scholar
  39. Riddihough, R.P., 1984. Juan de Fuca Plate Map: JFP-11 Magnetic Anomaly, Open File 85–20. Pacific Geoscience Centre, Earth Physics Branch, Department of Energy, Mines, and Resources, Sidney, B.C. Canada.Google Scholar
  40. Sibson, R.H., 1986. Earthquakes and rock deformation in Crustal Fault Zones, Ann. Rev. Earth Planet. Sci. 14: 149–175.Google Scholar
  41. Thompson, G. and Melson, W.G., 1972. The petrology of oceanic crust across fracture zones in the Atlantic Ocean: evidence for a new kind of seafloor spreading, J. Geol. 80: 526–538.Google Scholar
  42. Tobin, D.G. and Sykes, L.R., 1968. Seismicity and tectonics of the Norhteast Pacific Ocean, J. Geophys. Res. 94: 3076–3089.Google Scholar
  43. Wang, K., He, J. and Davis, E.E., 1997. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca Plate, J. Geophys. Res. 102: 661–674.Google Scholar
  44. Wilson, D.S., Hey, R.N. and Nishimura, C., 1984. Propagation as a mechanism of reorientation of the Juan de Fuca Ridge, J. Geophys. Res. 89: 9215–9225.Google Scholar
  45. Wilson, D.S., 1989. Deformation of the so-called Gorda Plate, J. Geophys. Res. 94: 3065–3075.Google Scholar
  46. Wilson, D.S., 1993. Confidence intervals for motion and deformation of the Juan de Fuca Plate, J. Geophys. Res. 98: 16053–16071.Google Scholar
  47. Yeats, R.S., Sieh, K. and Allen, C.R., 1997. The Geology of Earthquakes, Oxford University Press, 503 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Robert P. Dziak
    • 1
  • Christopher G. Fox
    • 2
  • Robert W. Embley
    • 2
  • John L. Nabelek
    • 3
  • Jochen Braunmiller
    • 3
  • Randolph A. Koski
    • 4
  1. 1.Cooperative Institute for Marine Resources StudiesOregon State University, Hatfield Marine Science CenterNewportUSA
  2. 2.National Oceanic and Atmospheric AdministrationPacific Marine Environmental Laboratory, Hatfield Marine Science CenterNewportUSA
  3. 3.College of Ocean and Atmospheric SciencesOregon State UniversityCorvallisUSA
  4. 4.United States Geological SurveyMenlo ParkUSA

Personalised recommendations