Advertisement

Journal for General Philosophy of Science

, Volume 31, Issue 2, pp 243–266 | Cite as

The Logical Structure of Classical Genetics

  • Wolfgang Balzer
  • Pablo Lorenzano
Article

Abstract

We present a reconstruction of so-called classical, formal or Mendelian genetics using a notation which we believe is more legible than that of earlier accounts, and lends itself easily to computer implementation, for instance in PROLOG. By drawing from, and emending, earlier work of Balzer and Dawe (1986,1997), the present account presents the three most important lines of development of classical genetics: the so-called Mendel's laws, linkage genetics and gene mapping, in the form of a theory-net. This shows that the set theoretic representation format used in the structuralist approach to the philosophy of science also applies to the domain of genetic theories. There construction is intended to lend more clarity to theme thodological, philosophical and didactical discussions of the foundations of genetics, and on the other hand to defend a formally, logically minded view of theories which seems to have become contested through the work of Feyerabend, Kuhn and Kitcher.

axiomatization classical genetics fundamental laws genetics structuralism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Balzer, W. and Sneed, J. D. (1977/78), “Generalized Net Structures of Empirical Theories I & II”, Studia Logica 36, 195-211 and 37: 167-194.CrossRefGoogle Scholar
  2. Balzer, W. and Dawe, C. M. (1986), “Structure and Comparison of Genetic Theories I & II”, British Journal for the Philosophy of Science 37, 55-69, 177-191.Google Scholar
  3. Balzer, W. and Dawe, C. M. (1997), Models for Genetics, Frankfurt: Peter Lang.Google Scholar
  4. Balzer, W., Moulines, C. U. and Sneed, J. D. (1987), An Architectonic for Science, Dordrecht: Reidel.Google Scholar
  5. Balzer, W., Lauth, B. and Zoubek, G. (1993), “A Model for Science Kinematics”, Studia Logica 52, 519-548.CrossRefGoogle Scholar
  6. Balzer, W. and Moulines, C. U. (1996), Structuralist Theory of Science: Focal Issues, New Results, Berlin-New York: Walter de Gruyter.Google Scholar
  7. Bateson, W. and Saunders, E. R. (1902), “Experimental Studies in the Physiology of Heredity”, Reports to the Evolution Committee of the Royal Society, Report I.Google Scholar
  8. Bateson, W., Saunders, E. R., Punnett, R. C. and Kilby, H. (1905), “Experimental Studies in the Physiology of Heredity”, Reports to the Evolution Committee of the Royal Society, Report II.Google Scholar
  9. Bateson, W., Saunders, E. R. and Punnett, R. C. (1906), “Experimental Studies in the Physiology of Heredity”, Reports to the Evolution Committee of the Royal Society, Report III.Google Scholar
  10. Bateson, W., Saunders, E. R. and Punnett, R. C. (1908), “Experimental Studies in the Physiology of Heredity”, Reports to the Evolution Committee of the Royal Society, Report IV.Google Scholar
  11. Bourbaki, N. (1968), Elements of Mathematics: Theory of Sets, Paris: Hermann.Google Scholar
  12. Castle, W. E. (1903), “Mendel's Law of Heredity”, Science 18, 396-406.Google Scholar
  13. Correns, C. (1900), „Gregor Mendels Regel über das Verhalten der Nachkommenschaft der Bastarde“, Berichte der Deutschen Botanischen Gesellschaft 18, 158-168.Google Scholar
  14. Culp, S. and Kitcher, P. (1989), “Theory Structure and Theory Change in Contemporary Molecular Biology”, British Journal for the Philosophy of Science 40, 459-483.Google Scholar
  15. Dawe, C. M. (1982), The Structure of Genetics, Doctoral Dissertation, London: University of London.Google Scholar
  16. Dawe, M. S. and Dawe, C. M., (1994), Prolog for Computer Science, London: Springer.Google Scholar
  17. Gähde, U. (1983), T-Theoretizität und Holismus, Frankfurt am Main: Peter Lang.Google Scholar
  18. Goodenough, U. and Levine, R. P. (1974), Genetics, London etc.: Holt Rinehart & Winston.Google Scholar
  19. Kitcher, P. (1982), “Genes”, British Journal for the Philosophy of Science 33, 337-59.Google Scholar
  20. Kitcher, P. (1984), “1953 and All That: A Tale of Two Sciences”, The Philosophical Review 93, 335-373.CrossRefGoogle Scholar
  21. Lindenmayer, A. and Simon, N. (1980), “The Formal Sructure of Genetics and the Reduction Problem”, in P. D. Asquith and R. N. Giere (eds.), PSA 1980, East Lansing/ Michigan: Philosophy of Science Association.Google Scholar
  22. Lorenzano, P. (1995), Geschichte und Struktur der klassischen Genetik, Frankfurt am Main: Peter Lang.Google Scholar
  23. Morgan, T. H. (1909), “What are Factors in Mendelian Inheritance?”, America Breeders' Association Report 6, 365-368.Google Scholar
  24. Morgan, T. H. (1913), Heridity and Sex, New York: Columbia University Press.Google Scholar
  25. Morgan, T. H. (1919), The Physical Basis of Heredity, Philadelphia: Lippincott.Google Scholar
  26. Morgan, T. H., Sturtevant, A. H., Muller, H. J. and Bridges, C. B. (1915), The Mechanism of Mendelian Heredity, New York: Henry Holt and Company.Google Scholar
  27. Rizzotti, M. and Zanardo, A. (1986), “Axiomatization of Genetics I & II”, Journal of Theoretical Biology 118: 61-71, 145-152.CrossRefGoogle Scholar
  28. Sinnot, E. W. and Dunn, L. C.: (1925), Principles of Genetics: An Elementary Text, with Problems, New York: McGraw-Hill, 1st edition; 2nd edition 1932; 3rd edition 1939, with T. Dobzhansky as co-author, 4th edition 1950, and 5th edition, 1958.Google Scholar
  29. Sneed, J. D. (1971), The Logical Structure of Mathematical Physics, Dordrecht: Reidel.Google Scholar
  30. Stefik, M. (1978), “Inferring DNA Structures from Segmentation Data”, Artificial Intelligence 11: 85-114.CrossRefGoogle Scholar
  31. Stefik, M. (1981), “Planning and Meta-Planning (MOLGEN: Part 2)”, Artificial Intelligence 16, 141-70.CrossRefGoogle Scholar
  32. Stegmüller, W. (1979), The Structuralist View of Theories. New York: Springer.Google Scholar
  33. Strickberger, M. W. (1985), Genetics, New York-London: Macmillian, 3rd ed.Google Scholar
  34. Vries de, H (1900), „Das Spaltungsgesetz der Bastarde“, Berichte der Deutschen Botanischen Gesellschaft 18: 83-90.Google Scholar
  35. Woodger, J. H. (1959), “Studies in the Foundations of Genetics”, in L. Henkin, P. Suppes and A. Tarski (eds.), The Axiomatic Method, Amsterdam: North-Holland.Google Scholar
  36. Zandvoort, H. (1982), “Comments on the Notion 'Empirical Claim of a Specialization Net' within the Structuralist Conception of Theories”, Erkenntnis 18, 25-38.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Wolfgang Balzer
  • Pablo Lorenzano

There are no affiliations available

Personalised recommendations