Advertisement

Journal of Global Optimization

, Volume 18, Issue 4, pp 321–336 | Cite as

Conical Algorithm in Global Optimization for Optimizing over Efficient Sets

  • Nguyen V. Thoai
Article

Abstract

The problem of optimizing some contiuous function over the efficient set of a multiple objective programming problem can be formulated as a nonconvex global optimization problem with special structure. Based on the conical branch and bound algorithm in global optimization, we establish an algorithm for optimizing over efficient sets and discuss about the implementation of this algorithm for some interesting special cases including the case of biobjective programming problems.

Multiple objective programming Biobjective programming Optimizing over efficient sets Global Optimization Conical algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, H.P. (1984), Optimization over the Efficient Set, Journal of Mathematical Analysis and Applications 98: 562-580.Google Scholar
  2. 2.
    Benson, H.P. (1986), An Algorithm for Optimizing over the Weakly-Efficient Set, European Journal of Operational Research 25: 192-199.Google Scholar
  3. 3.
    Benson, H.P. (1991), An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set, Journal of Global Optimization 1: 83-104.Google Scholar
  4. 4.
    Benson, H.P. (1995), A geometrical analysis of the outcome set in multiple objective convex programs with linear criterion functions, Journal of Global Optimization 6: 231-251.Google Scholar
  5. 5.
    Benson, H.P. and Lee, D. (1996), Outcome-based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem, Journal of Optimization Theory and Applications 88: 77-105.Google Scholar
  6. 6.
    Bolintineanu, S. (1993), Minimization of a quasiconcave function over an efficient set, Mathematical Programming 61: 89-110.Google Scholar
  7. 7.
    Dan, N.D. and Muu, L.D. (1996), A parametric Simplex Method for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem, Acta Mathematica Vietnamica 21: 59-67.Google Scholar
  8. 8.
    Dauer, J.P. and Fosnaugh, T.A. (1995), Optimization over the Efficient Set, Journal of Global Optimization 7: 261-277.Google Scholar
  9. 9.
    Fülöp, J. and Muu, L.D., Branch and Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem. To appear in Journal of Optimization Theory and Applications.Google Scholar
  10. 10.
    Geoffrion, A.M. (1967), Solving Bicriterion Mathematical Programs, Operations Research, 15: 39-54.Google Scholar
  11. 11.
    Horst, R., Pardalos, P.M. and Thoai, N.V. (1995), Introduction to Global Optimization, Kluwer, Dordrecht, The Netherlands.Google Scholar
  12. 12.
    R. Horst and N.V. Thoai (1994), Constraint Decomposition Algorithms in Global Optimization, Journal of Global Optimization 5: 333-348.Google Scholar
  13. 13.
    Horst, R. and Thoai, N.V. (1997), Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making, Journal of Optimization Theory and Applications 92: 609-635.Google Scholar
  14. 14.
    Horst, R. and Thoai, N.V. (1999), Maximizing a Concave Function over the Efficient orWeakly-Efficient Set, European Journal of Operational Research, 117: 239-252.Google Scholar
  15. 15.
    Horst, R. and Thoai, N.V. (1999), DC Programming: Overview, Journal of Optimization Theory and Applications, 103: 1-43.Google Scholar
  16. 16.
    Horst, R., Thoai, N.V. and Benson, H.P. (1991), Concave minimization via conical partitions and polyhedral outer approximation, Mathematical Programming 50: 259-274.Google Scholar
  17. 17.
    Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, 2nd edition, Springer-Verlag, Berlin, New York.Google Scholar
  18. 18.
    Le-Thi H.A., Pham D.T. and Muu L.D. (1996), Numerical Solution for Optimization over the Efficient Set by D.C. Optimization Algorithms, Operations Research Letters 19: 117-128.Google Scholar
  19. 19.
    Muu, L.D. and Luc, L.T. (1996), On Equivalence between Convex Maximization and Optimization over the Efficient Set, Vietnam Journal of Mathematics 24: 439-444.Google Scholar
  20. 20.
    Philip, J. (1972), Algorithms for the Vector Maximization Problem, Mathematical Programming 2: 207-229.Google Scholar
  21. 21.
    Rockafellar, R.T. (1970), “Convex Analysis”, Princeton University Press, Princeton, New Jersey.Google Scholar
  22. 22.
    Solanski, R.S. and Cohon, J.L. (1989), Approximating the Noninferior Set in Linear Biobjective Programs Using Multiparametric Decomposition, European Journal of Operational Research, 41: 355-366.Google Scholar
  23. 23.
    Steuer, R.E. (1985), Multiple Criteria Optimization: Theory, Computation and Application, Wiley, New York, 1985.Google Scholar
  24. 24.
    Thoai, N.V. (1991), Global Optimization Approach for Solving the Convex Multiplicative Programming Problem, Journal of Global Optimization, 1: 341-357.Google Scholar
  25. 25.
    Thoai, N.V. (2000), A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem, European Journal of Operational Research 122: 58-68.Google Scholar
  26. 26.
    Thoai, N.V. and Tuy, H. (1980), Convergent Algorithms for Minimizing a Concave function, Mathematics of Operations Research 5: 556-566.Google Scholar
  27. 27.
    Yu, P.L. (1985), Multiple Criteria Decision Making: Concepts, Techniques and Extensions, Plenum, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Nguyen V. Thoai
    • 1
  1. 1.Department of MathematicsUniversity of TrierTrierGermany

Personalised recommendations