Journal of Logic, Language and Information

, Volume 10, Issue 1, pp 115–136 | Cite as

Frege, Contextuality and Compositionality

  • Theo M.V. Janssen
Article

Abstract

There are two principles which bear the name “Frege'sprinciple:” the principle of compositionality, and the contextprinciple. The aim of this contribution is to investigate whether thisis justified: did Frege accept both principles at the same time, did hehold the one principle but not the other, or did he, at some moment,change his opinion? The conclusion is as follows. There is a developmentin Frege's position. In the period of Grundlagen he followed to a strict form of contextuality. He repeatedcontextuality in later writings, but became less strict. From 1914 on,pushed by the needs of research, he comes close to compositionality. Buthe could never make the final step toward compositionality forprincipled reasons, therefore he always would reject compositionality.

compositionality contextuality Frege history of logic history of philosophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelelli, I., ed., 1967, Gottlob Frege. Kleine Schriften, Hildesheim: Olms.Google Scholar
  2. Baumann, J.J., 1868–1869, Die Lehren von Raum, Zeit und Mathematik in der neueren Philosophie nach ihrem ganzen Einfluss dargestellt [etc.], Vol. I. Suarez, Descartes, Spinoza, Hobbes, Locke, Newton. Vol. II. Leibniz, Leibniz und Clarke, Berkeley, Hume, Berlin: Reimer.Google Scholar
  3. Beaney, M., 1996, Frege. Making Sense, London: Duckworth.Google Scholar
  4. Bynum, T. W., ed., 1972, Gottlob Frege, Conceptual Notation and Related Articles, Oxford: Oxford University Press.Google Scholar
  5. Cantor, G., 1883, Grundlagen einer allgemeinen Manifaltigkeitslehre: Ein mathematischphilosphischer Versuch in der Lehre des Unendlichen, Leipzig. Reprinted as pp. 165–209 in Georg Cantor. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, E. Zermelo, ed., Hildesheim: Olms, 1932.Google Scholar
  6. Cantor, M., 1855, Grundzüge einer Elementarmathematik, Heidelberg.Google Scholar
  7. Carnap, R., 1947, Meaning and Necessity: A Study in Semantics and Modal Logic, Chicago, IL: The University of Chicago Press.Google Scholar
  8. Currie, G., 1982, Frege: An Introduction to his Philosophy, Harvester Studies in Philosophy, Vol. 11, Brighton, Sussex: Harvester Press.Google Scholar
  9. Dummett, M., 1973, Frege. Philosophy of Language, London: Duckworth.Google Scholar
  10. Dummett, M., 1981, The Interpretation of Frege's Philosophy, London: Duckworth.Google Scholar
  11. Dummett, M., 1995, “The context principle: Centre of Frege's philosophy,” pp. 3–19 in Logik und Mathematik. Frege-Kolloquium Jena 1993, I. Max and W. Stelzner, eds., Perspektiven der Analytische Philosophy, Vol. 5, Berlin: Walter de Gruyter.Google Scholar
  12. Frege, G., 1884, Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau: W. Koebner. Reprint published by Georg Olms, Hildesheim, 1961. Translated by J.L. Austin, 1953.Google Scholar
  13. Frege, G., 1892, “Ñber Sinn und Bedeutung,” Zeitschrift für Philosophie und philosophische Kritik 100, 25–50. Reprinted as pp. 143–162 in Gottlob Frege, Kleine Schriften, I. Angelelli, ed., Hildesheim: Olms, 1967. Translated as “On sense and reference,” pp. 56–78 in Translations from the Philosophical Writings of Gottlob Frege, P.T. Geach and M. Black, eds., Oxford: Basil Blackwell, 1952.Google Scholar
  14. Frege, G., 1894, “[Rezenzion von] Dr. E.G. Husserl: Philosophie der Arithmetik. Logische und psychologische Untersuchungen. Erster Band, Leipzig, 1891,” Zeitschrift für Philosphie und philosophische Kritik CIII, 313–332. Reprinted in Angelelli (1967), translated in Geach and Black (1952).Google Scholar
  15. Frege, G., 1923, “Logische Untersuchungen. Dritter Teil: Gedankengefüge,” Beiträge zur Philosophie des Deutschen Idealismus III, 36–51. Reprinted as pp. 378–294 in Angelelli (1967), translated as pp. 55–78 in Geach and Stoothoff (1977).Google Scholar
  16. Frege, G., 1953, The Foundations of Arithmetic. A Logico-Mathematical Enquiry into the Concept of Number, 2nd revised edition, Oxford: Basil Blackwell. Transl. (with original text) by J.L. Austin.Google Scholar
  17. Gabriel, G., Hermes, H., Kambartel, F., Thiel, C., and Veraart, A., eds., 1976, Gottlob Frege. Wissenschaftliche Briefwechsel, Hamburg: Felix Meiner.Google Scholar
  18. Gabriel, G., Hermes, H., Kambartel, F., Thiel, C., and Veraart, A., 1980, Gottlob Frege. Philosophical and Mathematical Correspondence, Oxford: Basil Blackwell. Abridged by McGuiness and translated by H. Kaal.Google Scholar
  19. Geach, P.T. and Black, M., 1952, Translations from the Philosophical Writings of Gottlob Frege, Oxford: Basil Blackwell.Google Scholar
  20. Geach, P.T. and Stoothoff, R.H., 1977, Logical Investigations. Gottlob Frege, Oxford: Basil Blackwell.Google Scholar
  21. Graß mann, H., 1860, Lehrbuch der Mathematik für höhere Lehranstalten, dl. I, Arithmetik. Stettin. Reprint in F. Engel, ed. Gesammelte mathematische und physikalische Werke/Herm. Graß mann, Leipzig: Teubner, 1894–1911, II, i.Google Scholar
  22. Groenendijk, J. and Stokhof, M., 1982, “Semantic analysis of wh-complements,” Linguistics and Philosophy 5, 175–233.Google Scholar
  23. Hankel, H., 1867, Vorlesungen über die complexe Zahlen und ihre Functionen, Leipzig.Google Scholar
  24. Hankel, H., 1876, Theorie der complexen Zahlensysteme, Leipzig: Voss.Google Scholar
  25. Hermes, H., Kambartel, F., and Kaulbach, F., eds., 1969, Gottlob Frege. Nachgelassene Schriften, Hamburg: Felix Meiner.Google Scholar
  26. Hermes, H., Kambartel, F., and Kaulbach, F., eds., 1979, Gottlob Frege. Posthumous Writings, Oxford: Basil Blackwell. Translated by P. Long and R. White.Google Scholar
  27. Hesse, O., 1872, Die vier Species, Leipzig: Teubner.Google Scholar
  28. Hintikka, J. and Sandu, G., 1997, “Game-theoretical semantics,” pp. 361–410 in Handbook of Logic and Language, J. van Benthem and A. ter Meulen, eds., Amsterdam: Elsevier and Cambridge, MA: MIT Press.Google Scholar
  29. Hodges, W., 1998, “Compositionality is not the problem,” Logic and Logical Philosophy 6, 7–33.Google Scholar
  30. Hodges, W., 2001, “Formal features of compositionality,” Journal for Logic Language and Computation, 2001, this volume.Google Scholar
  31. Husserl, E., 1891, Philosophie der Arithmetik. Logische und psychologische Untersuchungen, Halle an der Saale: C.E.M. Pfeffer. Reprinted in L. Eley (ed.), The Hague: Martinus Nijhoff, 1970.Google Scholar
  32. Janssen, T.M.V., 1986, Foundations and Applications of Montague Grammar: Part 1, Philosophy, Framework, Computer Science, CWI Tract, No. 19, Amsterdam: Centre for Mathematics and Computer Science.Google Scholar
  33. Janssen, T.M.V., 1997, “Compositionality” (with an appendix by B. Partee), pp. 417–473 in Handbook of Logic and Language, J. van Benthem and A. ter Meulen, eds., Amsterdam: Elsevier and Cambridge, MA: MIT Press.Google Scholar
  34. Janssen, T.M.V., “A note on the historic context of the context principle and the compositionality principle,” unpublished note (theo@wins.uva.nl).Google Scholar
  35. Jevons, W.S., 1879 Principles of Science, 3rd edition, London (first edition 1873).Google Scholar
  36. Köpp, G., 1867, Schularithmetik, Eisenach.Google Scholar
  37. Kossak, E., 1872, Die Elemente der Aritmetik, Programm des Friedrich-Werder'schen Gymnasium, Berlin.Google Scholar
  38. Lipschitz, R., 1877–1880, Lehrbuch der Analysis, 2 Vols., Bonn: Max Cohen.Google Scholar
  39. Mill, J.S., 1843, A System of Logic, Ratiocinative and Inductive, Being a Connected View of the Principles of Evidence and the Methods of Scientific Investigation, London: Parker, Son, and Bourn. Reprinted in J.M. Robson (ed.); introduction by R.F. McRae, Collected Works of John Stuart Mill, Vols. 7–8, Toronto: University of Toronto Press and London: Routledge & Kegan Paul, 1973–1974. Translated as Mill (1877).Google Scholar
  40. Mill, J.S., 1877, System der deductiven und inductiven Logik: Eine Darlegung der Principien wissenschaftlicher Forschung, insbesondere der Naturforschung, 2 Vols. Braunschweig. German translation by J. Schiel.Google Scholar
  41. Montague, R., 1970, “Universal grammar,” Theoria 36, 373–398. Reprinted as pp. 222–246 in Formal Philosophy. Selected Papers of Richard Montague, R.H. Thomason, ed., New Haven, CT: Yale University Press, 1974.Google Scholar
  42. Montague, R., 1973, “The proper treatment of quantification in ordinary English,” pp. 221–242 in Approaches to Natural Language, K.J.J. Hintikka, J.M.E. Moravcsik, and P. Suppes, eds., Synthese Library, Vol. 49, Dordrecht: Reidel. Reprinted as pp. 247–270 in Formal Philosophy. Selected Papers of Richard Montague, R.H. Thomason, ed., New Haven, CT: Yale University Press, 1974.Google Scholar
  43. Pelletier, F.J., 1994, “The principle of semantic compositionality,” Topoi 13, 11–24.Google Scholar
  44. Pelletier, F.J., 2001, “Did Frege believe Frege's principle?,” Journal for Logic, Language, and Information 10, 87–114.Google Scholar
  45. Resnik, M.D., 1967, “The context principle in Frege's philosophy,” Philosophy and Phenomenological Research 27, 356–365.Google Scholar
  46. Resnik, M.D., 1976, “Frege's context principle revisited,” pp. 35–49 in Studien zu Frege III: Logik und Semantik, M. Schirn, ed., Stuttgart: Frommann-Holzboog.Google Scholar
  47. Resnik, M.D., 1979, “Frege as idealist and then realist,” Inquiry 22, 350–357.Google Scholar
  48. Rott, H., 2000, “Fregean elucidations,” Linguistics and Philosophy, to appear.Google Scholar
  49. Schloemilch, D., 1881, Handbuch der algebraischen Analysis, Jena: Frommann.Google Scholar
  50. Schröder, E., 1873, Lehrbuch der Arithmetik und Algebra, Leipzig.Google Scholar
  51. Sluga, H.D., 1971, “Review of Frege's 'Nachgelassene Schriften',” The Journal of Philosophy LXVIII.Google Scholar
  52. Sluga, H.D., 1975, “Frege and the rise of analytic philosophy,” Inquiry 18, 471–498.Google Scholar
  53. Sluga, H.D., 1977, “Frege's alleged realism, Review of Bynum (1972) and Dummett (1973),” Inquiry 20, 227–242.Google Scholar
  54. Thomae, J.K.J., 1880, Elementäre Theorie der analytische Functionen.Google Scholar
  55. Thomason, R.H., 1974, Formal Philosophy. Selected Papers of Richard Montague, New Haven, CT: Yale University Press.Google Scholar
  56. van Benthem, J. and ter Meulen, A., eds., 1997, Handbook of Logic and Language, Amsterdam: Elsevier and Cambridge, MA: MIT Press.Google Scholar
  57. Wundt, W., 1880, Logik. Eine Untersuchung der Principien der Erkenntnis und der Methoden der wissenschaftlicher Forschung, Vol. I, Erkentnisslehre, 1st edition, Stuttgart: Ferdinand Enke, Stuttgart.Google Scholar
  58. Zermelo, E., 1932, Georg Cantor. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Hildesheim: Olms. Reprint published by Olms, Hildesheim, 1962.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Theo M.V. Janssen
    • 1
  1. 1.Computer ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations