Cancer and Metastasis Reviews

, Volume 19, Issue 1–2, pp 51–57

Carbohydrate-Recognition and Angiogenesis

  • Pratima Nangia-Makker
  • Sara Baccarini
  • Avraham Raz
Article
  • 95 Downloads

Abstract

Angiogenesis is required for the continual growth of the tumor and provides a gateway for cells to escape the confines of the primary tumor. Angiogenic stimulus triggers a cascade of functional responses leading to local basement membrane dissolution, endothelial cell migration, proliferation and microvessel morphogenesis. In this commentary, we review the significance of carbohydrate-binding proteins involved in angiogenesis. The importance of carbohydrate-recognition processes to angiogenesis stems from the observation that angiogenic factors like fibroblast growth factor family and vascular endothelial growth factors bind initially to the extracellular matrix proteoglycans before binding to their cognate receptors, and some of the adhesion molecules bind to glycoconjugates present on the surface of the endothelial cells. The possible significance of these interactions will be discussed.

neovascularization proteoglycans glycoproteins adhesion molecules angiogenic factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackson RL, Busch SJ, Cardin AD: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71: 481-539, 1991Google Scholar
  2. 2.
    Baird A, Klagsbrun M: The fibroblast growth factor family. Cancer Cells 3: 239-243, 1991Google Scholar
  3. 3.
    Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK: Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 149: 59-71, 1996Google Scholar
  4. 4.
    Burgess WH, Maciag T: The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58: 575-606, 1989Google Scholar
  5. 5.
    Gospodarowicz D: Biological activities of fibroblast growth factors. Ann NY Acad Sci 638: 1-8, 1991Google Scholar
  6. 6.
    Folkman J, Klagsbrun M: Angiogenic factors. Science 235: 442-447, 1987Google Scholar
  7. 7.
    Wang Y, Becker D: Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3: 887-893, 1997Google Scholar
  8. 8.
    Konerding MA, Fait F, Dimitropoulou C, Malkusch W, Fern C, Giavazzi R, Coltrini D, Presta M: Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study. Am J Pathol 152: 1607-1616, 1998Google Scholar
  9. 9.
    Vlodavsky I, Folkman J, Sullivan R, Fridman R. Ishai-Michaeli R, Sasse J, Klagsbrun M: Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84: 2292-2296, 1987Google Scholar
  10. 10.
    Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I: A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 130: 393-400, 1988Google Scholar
  11. 11.
    Pantoliano MW, Horlick RA, Springer BA, Van Dyk DE, Tobery T, Wetmore DR, Lear JD, Nahapetian AT, Bradley JD, Sisk WP: Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33: 10229-10248, 1994Google Scholar
  12. 12.
    Reiland J, Rapraeger AC: Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci 105: 1085-1093, 1993Google Scholar
  13. 13.
    Roghani M, Moscatelli D: Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms. J Biol Chem 267: 22 156-22 162, 1992Google Scholar
  14. 14.
    Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL: An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259: 1918-1921, 1993Google Scholar
  15. 15.
    Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi F, Leder P: Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12: 240-247, 1992Google Scholar
  16. 16.
    Thompson LD, Pantoliano MW, Springer BA: Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33: 3831-3840, 1994Google Scholar
  17. 17.
    Li LY, Safran M, Aviezer D, Bohlen P, Seddon AP, Yayon A: Diminished heparin binding of a basic fibroblast growth factor mutant is associated with reduced receptor binding, mitogenesis, plasminogen activator induction, and in vitro angiogenesis. Biochemistry 33: 10999-11007, 1994Google Scholar
  18. 18.
    Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC: Heparin structure and interactions with basic fibroblast growth factor. Science 271: 1116-1120, 1996Google Scholar
  19. 19.
    Ornitz DM, Herr AB, Nilsson M, Westman J, Svahn CM, Waksman G: FGF binding and FGF receptor activation by synthetic heparan-derived di-and trisaccharides. Science 268: 432-436, 1995Google Scholar
  20. 20.
    Moy FJ, Safran M, Seddon AP, Kitchen D, Bohlen P, Aviezer D, Yayon A, Powers R: Properly oriented heparindecasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry 36: 4782-4791, 1997Google Scholar
  21. 21.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844, 1993Google Scholar
  22. 22.
    Saleh M, Stacker SA, Wilks AF: Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56: 393-401, 1996Google Scholar
  23. 23.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominantnegative Flk-1 mutant. Nature 367: 576-579, 1994Google Scholar
  24. 24.
    Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189-1193, 1995Google Scholar
  25. 25.
    Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF: The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 59: 100-115, 1996Google Scholar
  26. 26.
    Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W: Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140: 947-959, 1998Google Scholar
  27. 27.
    Roberts WG, Palade GE: Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57: 765-772, 1997Google Scholar
  28. 28.
    Dvorak HF, Nagy JA, Berse B, Brown LF, Yeo KT, Yeo TK, Dvorak AM, van de Water L, Sioussat TM, Senger DR: Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann NY Acad Sci 667: 101-111, 1992Google Scholar
  29. 29.
    Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 359: 843-845, 1992Google Scholar
  30. 30.
    Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-848, 1992Google Scholar
  31. 31.
    Tischer F, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA: The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947-11954, 1991Google Scholar
  32. 32.
    Park JE, Keller GA, Ferrara N: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4: 1317-1326, 1993Google Scholar
  33. 33.
    Cohen T, Gitay-Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ, Neufeld G: VFGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VFGF receptors of human melanoma cells. J Biol Chem 270: 11322-11326, 1995Google Scholar
  34. 34.
    Cheng SY, Nagane M, Huang HS, Cavenee WK: Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci USA 94: 12081-12087, 1997Google Scholar
  35. 35.
    Jonca F, Ortega N, Gleizes PE, Bertrand N, Plouet J: Cell release of bioactive fibroblast growth factor 2 by exon 6-encoded sequence of vascular endothelial growth factor. J Biol Chem 272: 24203-24209, 1997Google Scholar
  36. 36.
    Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D: Glypican-1 is a VFGF165 binding proteoglycan that acts as an extracellular chaperone for VFGF165. J Biol Chem 274: 10816-10822, 1999Google Scholar
  37. 37.
    Schlessinger J, Lax I, Lemmon M: Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83: 357-360, 1995Google Scholar
  38. 38.
    West DC, Kumar S: The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res 183: 179-196, 1989Google Scholar
  39. 39.
    Johnson P, Maiti A, Brown KL, Li R: A role for the cell adhesion molecule CD44 and sulfation in leukocyte-endothelial cell adhesion during an inflammatory response? Biochem Pharmacol 59: 455-465, 2000Google Scholar
  40. 40.
    Stamenkovic I, Amiot M, Pesando JM, Seed B: A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56: 1057-1062, 1989Google Scholar
  41. 41.
    Goldstein LA, Zhou DF, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC: A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56: 1063-1072, 1989Google Scholar
  42. 42.
    Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A: Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem 273: 338-343, 1998Google Scholar
  43. 43.
    Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A: Identi-fication of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol 122: 257-264, 1993Google Scholar
  44. 44.
    Kohda D, Morton CJ, Parkar AA, Hatanaka H, Inagaki FM, Campbell ID, Day AJ: Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell 86: 767-775, 1996Google Scholar
  45. 45.
    Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301-314, 1994Google Scholar
  46. 46.
    Tedder TF, Steeber DA, Chen A, Engel P: The selectins: vascular adhesion molecules. Faseb J 9: 866-873, 1995Google Scholar
  47. 47.
    Lasky LA: Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64: 113-139, 1995Google Scholar
  48. 48.
    Slevin M, Krupinski J, Kumar S, Gaffney J: Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasmic signal transduction pathway resulting in proliferation. Lab Invest 78: 987-1003, 1998Google Scholar
  49. 49.
    Nguyen M, Folkman J, Bischoff J: 1-Deoxymannojirimycin inhibits capillary tube formation in vitro. Analysis of N-linked oligosaccharides in bovine capillary endothelial cells. J Biol Chem 267: 26157-26165, 1992Google Scholar
  50. 50.
    Nguyen M, Strubel NA, Bischoff J: A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365: 267-269, 1993Google Scholar
  51. 51.
    Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ: Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376: 517-519, 1995Google Scholar
  52. 52.
    Kraling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, Mulliken JB, Corless CL, Bischoff J: E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 148: 1181-1191, 1996Google Scholar
  53. 53.
    Morbidelli L, Brogelli L, Granger HJ, Ziche M: Endothelial cell migration is induced by soluble P-selectin. Life Sci 62: L7-11, 1998Google Scholar
  54. 54.
    Varki A: Selectin ligands. Proc Natl Acad Sci USA 91: 7390-7397, 1994Google Scholar
  55. 55.
    Nguyen M, Eilber FR, Defrees S: Novel synthetic analogs of sialyl Lewis X can inhibit angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 228: 716-723, 1996Google Scholar
  56. 56.
    Gerritsen ME, Shen CP, Atkinson WJ, Padgett RC, Gimbrone Jr. MA, Milstone DS: Microvascular endothelial cells from E-selectin-deficient mice form tubes in vitro. Lab Invest 75: 175-184, 1996Google Scholar
  57. 57.
    Hartwell DW, Butterfield CE, Frenette PS, Kenyon BM, Hynes RO, Folkman J, Wagner DD: Angiogenesis in P-and E-selectin-deficient mice. Microcirculation 5: 173-178, 1998Google Scholar
  58. 58.
    Barondes SH, Cooper DN, Gitt MA, Leffler H: Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269: 20 807-20 810, 1994Google Scholar
  59. 59.
    Herrmann J, Turck CW, Atchison RE, Huflejt ME, Poulter L, Gitt MA, Burlingame AL, Barondes SH, Leffler H: Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. J Biol Chem 268: 26 704-26 711, 1993Google Scholar
  60. 60.
    Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A: Galectin-3: a novel antiapoptotic molecule with a functional BHI (NWGR) domain of Bcl-2 family. Cancer Res 57: 5272-5276, 1997Google Scholar
  61. 61.
    Nangia-Makker P, Akahani S, Bresalier R, Raz A: The role of galectin-3 in metastasis. In: Seve A-P, Caron M (eds) Lectins and Pathology. Harwood Academic Publishers, 2000, pp 67-78Google Scholar
  62. 62.
    Perillo NL, Marcus ME, Baum LG: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med 76: 402-412, 1998Google Scholar
  63. 63.
    Ochieng J, Green B, Evans S, James O, Warfield P: Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim Biophys Acta 1379: 97-106, 1998Google Scholar
  64. 64.
    Inohara H, Raz A: Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res 55: 3267-3271, 1995Google Scholar
  65. 65.
    Lotan R, Belloni PN, Tressler RJ, Lotan D, Xu XC, Nicolson GL: Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J 11: 462-468, 1994Google Scholar
  66. 66.
    Gordower L, Decaestecker C, Kacem Y, Lemmers A, Gusman J, Burchert M, Danguy A, Gabius H, Salmon I, Kiss R, Camby I: Galectin-3 and galectin-3-binding site expression in human adult astrocytic tumours and related angiogenesis. Neuropathol Appl Neurobiol 25: 319-330, 1999Google Scholar
  67. 67.
    Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A: Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156: 899-909, 2000Google Scholar
  68. 68.
    Van den Brule F, Castronovo V: Limmin-binding lectins during cancer invation and metastasis. In: Caron M, Seve A-P (eds) Lectins and Pathology. Harwood Academic Publishers, 2000, pp 79-123Google Scholar
  69. 69.
    Newham P, Humphries MJ: Integrin adhesion receptors: structure, function and implications for biomedicine. Mol Med Today 2: 304-313, 1996Google Scholar
  70. 70.
    Sheppard D: Epithelial integrins. Bioessays 18: 655-660, 1996Google Scholar
  71. 71.
    Dejana E, Languino LR, Collella S, Corbascio GC, Plow E, Ginsberg M, Marchisio PC: The localization of a platelet GpIIb-IIIa-related protein in endothelial cell adhension structures. Blood 71: 566-572, 1998Google Scholar
  72. 72.
    Bischoff J: Cell adhension and angiogenesis. J Clin Invest 99: 373-376, 1997Google Scholar
  73. 73.
    Stromblad S, Cheresh DA: Integrins, angiogenesis and vascular cell survival. Chem Biol 3: 881-885, 1996Google Scholar
  74. 74.
    Horton MA: The alpha v beta 3 integrin “vitronectin receptor”. Int J Biochem Cell Biol 29: 721-725, 1997Google Scholar
  75. 75.
    Ruoslahti E, Pierschbacher MD: Arg-Gly-Asp: a versatile cell recognition signal. Cell 44: 517-518, 1986Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Pratima Nangia-Makker
    • 1
  • Sara Baccarini
    • 1
  • Avraham Raz
    • 1
  1. 1.Tumor Progression and Metastasis, Karmanos Cancer InstituteWayne State UniversityDetroitUSA

Personalised recommendations