Journal of Biomolecular NMR

, Volume 18, Issue 3, pp 207–216 | Cite as

Pressure alters electronic orbital overlap in hydrogen bonds

  • Hua Li
  • Hiroaki Yamada
  • Kazuyuki Akasaka
  • Angela M. Gronenborn
Article

Abstract

Pressure-induced changes in 3hJNC′ scalar couplings through hydrogen bonds were investigated in the immunoglobulin binding domain of streptococcal protein G. 1H, 15N and 13C triple-resonance NMR spectroscopy coupled with the on-line high pressure cell technique was used to monitor 3hJNC′ scalar couplings at 30 and 2000 bar in uniformly labeled 15N and 13C protein isotopes. Both increased and decreased 3hJNC′ scalar couplings were observed at high pressure. No correlation with secondary structure was apparent. The difference in coupling constants as well as pressure-induced chemical shift data suggests a compaction of the helix ends and an increase of the helix pitch at its center in response to pressure. Our data provides the first direct evidence that the electronic orbital overlap in protein backbone hydrogen bonds is altered by pressure.

GB1 H-bonds J coupling pressure proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achari, A., Hale, S.P., Howard, A.J., Clore, G.M., Gronenborn, A.M., Hardman, K.D. and Whitlow, M. (1992) Biochemistry, 31, 10449–10457.Google Scholar
  2. Akasaka, K., Tezuka, T. and Yamada, H. (1997) J. Mol. Biol., 271, 671–678.Google Scholar
  3. Akasaka, K., Li, H., Yamada, H., Li, R., Thoresen, T. and Woodward, C.K. (1999) Protein Sci., 8, 1946–1953.Google Scholar
  4. Barchi Jr., J.J., Grasberger, B., Gronenborn, A.M. and Clore, G.M. (1994) Protein Sci., 3, 15–21.Google Scholar
  5. Bodenhausen, G. and Rubin, D.J. (1980) Chem. Phys. Lett., 69, 185–189.Google Scholar
  6. Clore, G.M. and Gronenborn, A.M. (1992) J. Mol. Biol., 223, 853–856.Google Scholar
  7. Cordier, F. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 1601–1602.Google Scholar
  8. Cornilescu, G., Hu, J.-S. and Bax, A. (1999a) J. Am. Chem. Soc., 121, 2949–2950.Google Scholar
  9. Cornilescu, G., Ramirez, B.E., Frank, M.K., Clore, G.M., Gronenborn, A. M. and Bax, A. (1999b) J. Am. Chem. Soc., 121, 6275–6279.Google Scholar
  10. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  11. Derrick, J.P. and Wigley, D.B. (1994) J. Mol. Biol., 243, 906–918.Google Scholar
  12. Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293–8297.Google Scholar
  13. Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G.L. (1994) Biochemistry, 33, 4721–4729.Google Scholar
  14. Good, N.E. and Izawa, S. (1972) Methods Enzymol., 24, 53–68.Google Scholar
  15. Gronenborn, A.M. and Clore, G.M. (1993) Immunol. Methods, 2, 3–8.Google Scholar
  16. Gronenborn, A.M. and Clore, G.M. (1993) J. Mol. Biol., 233, 331–335.Google Scholar
  17. Gronenborn, A.M., Filpula, D.R., Essig, N.Z., Achari, A., Whitlow, M., Wingfield, P.T. and Clore, G.M. (1991) Science, 253, 657–661.Google Scholar
  18. Hadzi, D. and Tompson, H.W. (1959) Hydrogen Bonding, Pergamon Press, London.Google Scholar
  19. Inoue, K., Yamada, H., Imoto, T. and Akasaka, K. (1998) J. Biomol. NMR, 12, 535–541.Google Scholar
  20. Isaacs, E.D., Shukla, A., Platzmann, P.M., Barbiellini, B. and Tulk, C.A. (1999) Phys. Rev. Lett., 82, 600–603.Google Scholar
  21. Juranic, N., Ilich, P.K. and Macura, S. (1995) J. Am. Chem. Soc., 117, 405–410.Google Scholar
  22. Kalbitzer, H.R., Gorler, A., Li, H., Dubovskii, P.V., Hengstenberg, W., Kowolik, C., Yamada, H. and Akasaka, K. (2000) Protein Sci., 9, 693–703.Google Scholar
  23. Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graphics, 14, 51–55.Google Scholar
  24. Kundrot, C.E. and Richards, F.M. (1987) J. Mol. Biol., 193, 157–170.Google Scholar
  25. Li, H., Yamada, H. and Akasaka, K. (1998) Biochemistry, 37, 1167–1173.Google Scholar
  26. Li, H., Yamada, H. and Akasaka, K. (1999) Biophys. J., 77, 2801–2812.Google Scholar
  27. Lin, J., Westler, W.M., Cleland, W.W., Markley, J.L. and Frey, P.A. (1998) Proc. Natl. Acad. Sci. USA, 95, 14664–14668.Google Scholar
  28. Linowski, J.W., Liu, N.-I. and Jonas, J. (1976) J. Magn. Reson., 23, 455–460.Google Scholar
  29. Linowski, J.W., Liu, N.-I. and Jonas, J. (1976) J. Chem. Phys., 65, 3383–3384.Google Scholar
  30. LiWang, A. C. and Bax, A. (1997) J. Magn. Reson., 127, 54–64.Google Scholar
  31. Pervushin, K., Ono, A., Fernandez, C., Szyperski, T., Kainosho, M. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 14147–14151.Google Scholar
  32. Pimentel, G.C. and McClellan, A.L. (1960) The Hydrogen Bond, Freeman & Co., San Francisco, CA.Google Scholar
  33. Sareth, S., Li, H., Yamada, H., Woodward, C.K. and Akasaka, K. (2000) FEBS Lett., 470, 11–14.Google Scholar
  34. Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 8076–8082.Google Scholar
  35. Wagner, G. (1984) Q. Rev. Biophys., 16, 1–57.Google Scholar
  36. Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948–5949.Google Scholar
  37. Wang, Y.-X., Jacob, J., Cordier, F., Wingfield, P., Stahl, S.J., Huang, S. L., Torchia, D., Grzesiek, S. and Bax, A. (1999) J. Biomol. NMR, 14, 181–184.Google Scholar
  38. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J. L. and Sykes, B. D. (1995) J. Biomol. NMR, 6, 135–140.Google Scholar
  39. Yamada, H. (1974) Rev. Sci. Instrum., 45, 640–642.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Hua Li
    • 1
  • Hiroaki Yamada
    • 2
  • Kazuyuki Akasaka
    • 3
    • 2
  • Angela M. Gronenborn
    • 4
  1. 1.Graduate School of Science and TechnologyKobe UniversityJapan
  2. 2.Faculty of ScienceKobe UniversityJapan
  3. 3.Graduate School of Science and TechnologyJapan
  4. 4.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.

Personalised recommendations