Conservation Genetics

, Volume 1, Issue 2, pp 157–162 | Cite as

A multi-samples, multi-extracts approach for microsatellite analysis of faecal samples in an arboreal ape

  • Benoît Goossens
  • Lounès Chikhi
  • Sri S. Utami
  • Jan de Ruiter
  • Michael W. Bruford
Article

Abstract

We investigated the effect of the number of faecal samples, ofextracts per sample and of PCRs per extract on the reliability ofgenotypes for a microsatellite locus in free-living orang-utans.For each individual 36 PCRs were performed using DNA extractionsfrom up to four faecal samples. We found a very largeinter-individual variation in positive PCRs (P+) (36/36 for oneindividual and 0/36 for another). As many as 30% of the cases ledto erroneous genotypes when only one P+ was obtained. It ispreferable to use at least 4 P+ per extract to reduce thisproportion to less than 1%. With 3 P+ results, erroneousgenotypes were still observed in 26% of the cases together. Theseresults indicate that it is necessary to do a minimum of 4 PCRsper extract. In order to have a chance to observe 4 P+, threeextracts should be ideally analysed for each sample. We alsorecommend that when possible two or more samples should becollected in the field to increase the chance of having extractscontaining DNA and to provide independent replicates. While werecognise the difficulty of working with faecal samples, weadvocate the use of faecal material for genetic studies ofcertain wild animal populations where the advantages of avoidingdisturbance, stress and injury are deemed of critical importance.

conservation genetics faeces microsatellites non-invasive methods Pongo pygmaeus abelii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards A, Civitemmo A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric tandem repeats. American Journal of Human Genetics, 49, 746-756.PubMedPubMedCentralGoogle Scholar
  2. Flagstad Ø, Røed K, Stacy JE, Jakobsen KS (1999) Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol. Mol. Ecol., 8, 879-883.CrossRefPubMedGoogle Scholar
  3. Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Mol. Ecol., 7, 1423-1428.CrossRefPubMedGoogle Scholar
  4. Gagneux P, Boesch C, Woodruff DS (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol. Ecol., 6, 861-868.CrossRefPubMedGoogle Scholar
  5. Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D (1999) Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society of London B, 266, 1189-1195.CrossRefGoogle Scholar
  6. Gerloff U, Schlötterer C, Rassmann K, Rambold I, Hohmann G, Fruth B, Tautz D (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Mol. Ecol., 4, 515-518.CrossRefGoogle Scholar
  7. Goossens B, Waits LP, Taberlet P (1998) Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Mol. Ecol., 7, 1237-1241.CrossRefPubMedGoogle Scholar
  8. Höss M, Kohn M, Knauer F, Schröder W, Pääbo S (1992) Excrement analysis by PCR. Nature, 359, t199.CrossRefGoogle Scholar
  9. Höss M, Pääbo S (1993) DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research, 21, 3913-3914.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kohn MH, Knauer F, Stoffella A, Schröder W, Pääbo S (1995) Conservation genetics of the European brown bear-a study using excremental PCR of nuclear and mitochondrial sequences. Mol. Ecol., 4, 95-103.CrossRefPubMedGoogle Scholar
  11. Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends in Ecology and Evolution, 12, 223-227.CrossRefPubMedGoogle Scholar
  12. Launhardt K, Epplen C, Epplen JT, Winkler P (1998) Amplification of microsatellites adapted from human systems in faecal DNA of wild Hanuman langurs (Presbytis entellus). Electrophoresis, 19, 1356-1361.CrossRefPubMedGoogle Scholar
  13. MacKinnon J (1974) The behaviour and ecology of wild orangutans (Pongo pygmaeus). Animal Behaviour, 22, 3-74.CrossRefGoogle Scholar
  14. Morin PA, Wallis J, Moore JJ, Woodruff DS (1994) Paternity exclusion in a community of wild chimpanzees using hypervariable simple sequence repeats. Mol. Ecol., 3, 469-478.CrossRefPubMedGoogle Scholar
  15. Morin PA, Woodruff DS (1996) Noninvasive genotyping for vertebrate conservation. In: Molecular Genetic Approaches to Conservation (eds. Smith TB, Wayne RK), pp. 298-313. Oxford University Press, Oxford.Google Scholar
  16. Navidi W, Arnheim N, Waterman MS (1992) A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. American Journal of Human Genetics, 50, 347-359.PubMedPubMedCentralGoogle Scholar
  17. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 24, 3189-3194.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends in Ecology and Evolution, 14, 323-327.CrossRefPubMedGoogle Scholar
  19. Utami SS, Goossens B, Bruford MW, de Ruiter J, van Hooff JARAM (submitted) Male bimaturism and reproductive success in Sumatran orang-utans.Google Scholar
  20. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506-513.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Benoît Goossens
    • 1
  • Lounès Chikhi
    • 2
  • Sri S. Utami
    • 3
    • 4
  • Jan de Ruiter
    • 5
  • Michael W. Bruford
    • 6
  1. 1.Biodiversity and Ecological Processes Group, School of BiosciencesCardiff UniversityCardiffUK
  2. 2.Institute of ZoologyThe Zoological Society of LondonLondonUK
  3. 3.Ethologie and Socio-OecologieUniversity of UtrechtUtrechtThe Netherlands
  4. 4.Fakultas BiologiUniversitas NasionalJakartaIndonesia
  5. 5.Department of AnthropologyUniversity of DurhamDurhamUK
  6. 6.Biodiversity and Ecological Processes Group, School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations