Advertisement

Space Science Reviews

, Volume 93, Issue 1–2, pp 55–77 | Cite as

Coronal Mass Ejections and Forbush Decreases

  • Hilary V. Cane
Article

Abstract

Coronal Mass Ejections (CMEs) are plasma eruptions from the solar atmosphere involving previously closed field regions which are expelled into the interplanetary medium. Such regions, and the shocks which they may generate, have pronounced effects on cosmic ray densities both locally and at some distance away. These energetic particle effects can often be used to identify CMEs in the interplanetary medium, where they are usually called `ejecta'. When both the ejecta and shock effects are present the resulting cosmic ray event is called a `classical, two-step' Forbush decrease. This paper will summarize the characteristics of CMEs, their effects on particles and the present understanding of the mechanisms involved which cause the particle effects. The role of CMEs in long term modulation will also be discussed.

Keywords

Solar Wind Cane Coronal Mass Ejection Magnetic Cloud Flux Rope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badruddin, Yadev, R. S., and Yadev, N. R.: 1986, 'Influence of Magnetic Clouds on Cosmic Ray Variations', Solar Phys. 105, 413–428.CrossRefADSGoogle Scholar
  2. Barnden, L. R.: 1973a, 'Forbush Decreases 1966–1972; Their Solar and Interplanetary Associations and Their Anisotropies', Proc. 13th Int. Cosmic Ray Conf. 2, 1271–1276.ADSGoogle Scholar
  3. Barnden, L. R.: 1973b, 'The Large-Scale Magnetic Field Configuration Associated With Forbush Decreases', Proc. 13th Int. Cosmic Ray Conf. 2, 1277–1282.ADSGoogle Scholar
  4. Belov, A. V. and Ivanov, K. G.: 1997, 'Forbush-Effects in 1977–1979', Proc. 25th Int. Cosmic Ray Conf., Durban 1, 421–424.Google Scholar
  5. Belov, A. V., Dorman, L. I., Eroshenko, E. A., Iucci, N., Villoresi, G., and Yanke, V. G.: 1995, 'Anisotropy of Cosmic Rays and Forbush Decreases in 1991', Proc. 24th Int. Cosmic Ray Conf., Rome 4, 912–915.Google Scholar
  6. Belov, A. V., Eroshenko, E. A., and Yanke, V. G.:1997, 'Modulation Effects in 1991–1994 Years', Correlated Phenomena at the Sun, in the Heliosphere, and in Geospace, ESA SP 415, 463–468.ADSGoogle Scholar
  7. Bieber, J. W. and Evenson, P. A.: 1998, 'CME Geometry: Relation to Cosmic Ray Anisotropy', Geophys. Res. Lett. 25, 2955–2958.CrossRefADSGoogle Scholar
  8. Bieber, J. W., Cane, H., Evenson, P., Pyle, R., and Richardson, I.: 1999, in S. R. Habbal, R. Esser, J. V. Hollweg, and P. A. Isenberg (eds.), 'Energetic Particle Flows Near CME Shocks and Ejecta', Solar Wind Nine, AIP 471, pp. 137–140.Google Scholar
  9. Bothmer, V., Heber, H., Kunow, H., Müller-Mellin, R., Wibberenz, G., Gosling, J. T., Balogh, A., Raviart, A., and Paizis, C.: 1997, 'The Effects of Coronal Mass Ejections on Galactic Cosmic Rays in the High Latitude Heliosphere: Observations from Ulysses' First Orbit', Proc. 25th Int. Cosmic Ray Conf., Durban 1, 333–336.Google Scholar
  10. Bothmer, V. and Schwenn, R.: 1998, 'The Structure and Origin of Magnetic Clouds in the Solar Wind', Ann. Geophys. 16, 1–24.ADSGoogle Scholar
  11. Burlaga, L. F., McDonald, F. B., and Ness, N. F.: 1993, 'Cosmic Ray Modulation and the Distant Helio-spheric Magnetic Field: Voyager 1 & 2 Observations from 1986 to 1989', J. Geophys. Res. 98, 1–11.ADSGoogle Scholar
  12. Burlaga, L. F., Lepping, R., and Jones, J.: 1990, in C. T. Russell, E. R. Priest, and L. C. Lee (eds.), 'Global Configuration of a Magnetic Cloud', Physics of Flux Ropes, Geophys. Monogr. Ser. 58, American Geophys. Union, Washington D.C., pp. 373–377.Google Scholar
  13. Cane, H. V.: 1993, 'Cosmic Ray Decreases and Magnetic Clouds', J. Geophys. Res. 98, 3509–3512.ADSGoogle Scholar
  14. Cane, H. V., Reames, D. V., and von Rosenvinge, T. T.: 1988, 'The Role of Interplanetary Shocks in the Longitude Distribution of Solar Energetic Particles', J. Geophys. Res. 93, 9555–9567.ADSGoogle Scholar
  15. Cane, H. V., Richardson, I. G., and von Rosenvinge, T. T.: 1993, 'Cosmic Ray Decreases and Particle Acceleration in 1978–1982 and Associated Solar Wind Structures', J. Geophys. Res. 98, 13 295–13 302.ADSGoogle Scholar
  16. Cane, H. V., Richardson, I. G., von Rosenvinge, T. T., and Wibberenz, G.: 1994, 'Cosmic Ray Decreases and Shock Structure: A Multispacecraft Study', J. Geophys. Res. 99, 21 429–21 441.CrossRefADSGoogle Scholar
  17. Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1995, 'The Response of Energetic Particles to the Presence of Ejecta Material', Proc. 24th Int. Cosmic Ray Conf., Rome 4, 377–380.Google Scholar
  18. Cane, H. V., Richardson, I. G., and von Rosenvinge, T. T.: 1996, 'Cosmic Ray Decreases: 1964–1994', J. Geophys. Res. 101, 21 561–21 572.ADSGoogle Scholar
  19. Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1997, 'Helios 1 and 2 Observations of Particle Decreases, Ejecta, and Magnetic Clouds', J. Geophys. Res. 102, 7075–7086.CrossRefADSGoogle Scholar
  20. Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1999a, in S. R. Habbal, R. Esser, J. V. Hollweg, and P. A. Isenberg (eds.), 'Solar Magnetic Field Variations and Cosmic Ray Modulation', Solar Wind Nine, AIP 471, pp. 99–102.Google Scholar
  21. Cane, H. V., Richardson, I. G., Wibberenz, G., and von Rosenvinge, T. T.: 1999b, 'Cosmic Ray Modulation and the Solar Magnetic Field', Geophys. Res. Lett. 26, 565–568.CrossRefADSGoogle Scholar
  22. Chih, P. C. and Lee, M. A.: 1986, 'A Perturbation Approach to Cosmic Ray Transients in Interplanetary Space', J. Geophys. Res. 91, 2903–2913.ADSGoogle Scholar
  23. Cliver, E. W. and Cane, H. V.: 1996, 'The Angular Extents of Solar/Interplanetary Disturbances and Modulation of Galactic Cosmic Rays', J. Geophys. Res. 101, 15 533–15 546.ADSGoogle Scholar
  24. Cliver, E. W., Dröge, W., and Müller-Mellin, R.: 1993, 'Superevents and Cosmic Ray Modulation', 1974–dy1985', J. Geophys. Res. 98, 15 231–15 240.ADSGoogle Scholar
  25. Crooker, N. U., McAllister, A. H., Fitzenreiter, R. J., Linker, J. A., Larson, D. E., Lepping, R. P., Szabo, A., Steinberg, J. T., Lazarus, A. J., Mikic, Z., and Lin, R. P.: 1998, 'Sector Boundary Transformation by an Open Magnetic Cloud', J. Geophys. Res. 103, 26 859–26 868.ADSGoogle Scholar
  26. Duggal, S. P. and Pomerantz, M. A.: 1977, 'The Origin of Transient Cosmic Ray Intensity Variations', J. Geophys. Res. 82, 2170–2174.ADSGoogle Scholar
  27. Duggal, S. P. and Pomerantz, M. A.: 1978, 'Symmetrical Equator-Pole Anisotropy During an Unusual Cosmic Ray Storm', Geophys. Res. Lett. 5, 625–627.ADSGoogle Scholar
  28. Dvornikov, V. M., Sdobnov, V. E., and Sergeev, A. V.: 1983, 'Analysis of Cosmic Ray Pitch-Angle Anisotropy During the Forbush-Effect in June 1972 by the Method of Spectrographic Global Survey', Proc. 18th Int. Cosmic Ray Conf. 3, 249–252.Google Scholar
  29. Farrugia, C. J., Richardson, I. G., Burlaga, L. F., Lepping, R. P., and Osherovich, V. A.: 1993, 'Simultaneous Observations of Solar MeV Particles in a Magnetic Cloud and in the Earths' Northern Tail Lobe: Implications for the Global Field Line Topology of Magnetic Clouds and for the Entry of Solar Particles Into the Magnetospher During Cloud Passage', J. Geophys. Res. 98, 15 497–15 507.ADSGoogle Scholar
  30. Forbush, S. E.: 1937, 'On the Effects in the Cosmic-Ray Intensity Observed During the Recent Magnetic Storm', Phys. Rev. 51, 1108–1109.CrossRefADSGoogle Scholar
  31. Forbush, S. E.: 1938, 'On the World-Wide Changes in Cosmic-Ray Intensity', Phys. Rev. 54, 975.CrossRefADSGoogle Scholar
  32. Gleeson, L. J. and Axford, W. I.: 1968, 'Solar Modulation of Galactic Cosmic Rays', Astrophys. J. 154, 1011–1026.CrossRefADSGoogle Scholar
  33. Gosling, J. T.: 1990, in C. T. Russell, E. R. Priest, and L. C. Lee (eds.), 'Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space', Physics of Flux Ropes, Geophys. Monogr. Ser. 58, American Geophys. Union, Washington D.C., pp. 343–364.Google Scholar
  34. Gosling, J. T.: 1993, 'The Solar Flare Myth', J. Geophys. Res. 98, 18 937–18 949.ADSGoogle Scholar
  35. Gosling, J. T., Hildner, E., MacQueen, R.M., Munro, R. H., Poland, A., and Ross, C. L.: 1974, 'Mass Ejections From the Sun: A View from Skylab', J. Geophys. Res. 79, 4581–4587.ADSGoogle Scholar
  36. Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A., and Ross, C. L.: 1976, 'The Speeds of Coronal Mass Ejection Events', Sol. Phys. 48, 389–397.CrossRefADSGoogle Scholar
  37. Gosling, J. T., Baker, D. N., Bame, S. J., Feldman, W. C., and Zwickl, R. D.: 1987, 'Bidirectional Solar Wind Heat Flux Events', J. Geophys. Res. 92, 8519–8535.ADSGoogle Scholar
  38. Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J.: 1992, 'Counterstreaming Solar Wind Halo Electron Events: Solar Cycle Variations', J. Geophys. Res. 97, 6531–6535.ADSGoogle Scholar
  39. Gosling, J. T., McComas, D. J., Phillips, J. L., Weiss, L. A., Pizzo, V. J., Goldstein, B. E., and Forsyth, R. J.: 1994, 'A New Class of Forward-reverse Shock Pairs in the SolarWind', Geophys. Res. Lett. 21, 2271–2274.CrossRefADSGoogle Scholar
  40. Gosling, J. T., Birn, J., and Hesse, M.: 1995, 'Three-Dimensional Magnetic Reconnection and the Magnetic Topology of Coronal Mass Ejection Events', Geophys. Res. Lett. 22, 869–872.CrossRefADSGoogle Scholar
  41. Haurwitz, M.W., Yoshida, S., and Akasofu, S. I.: 1965, 'Interplanetary Magnetic Field Asymmetries and Their Effects on Polar Cap Absorption Events and Forbush Decreases', J. Geophys. Res. 70, 2977–2988.ADSGoogle Scholar
  42. Hess, V. F. and Demmelmair, A.: 1937, 'World-wide Effect in Cosmic Ray Intensity, as Observed During a Recent Geomagnetic Storm', Nature 140, 316–317.ADSGoogle Scholar
  43. Hirshberg, J., Alksne, A., Colburn, D. S., Bame, S. J., and Hundhausen, A. J.: 1970, 'Observations of a Solar Flare Induced Interplanetary Shock and He-Enriched Driver Gas', J. Geophys. R. 75, 1–15.ADSGoogle Scholar
  44. Hofer, M. and Flückiger, E. O.: 2000, 'Cosmic Ray Spectral Variations and Anisotropy Near Earth During the 24 March 1991 Forbush Decrease', J. Geophys. Res., in press.Google Scholar
  45. Howard, R. A., Sheeley, Jr., N. R., Koomen, M. J., and Michels, D. J.: 1985, 'CoronalMass Ejections: 1979–1981', J. Geophys. Res. 90, 8173–8191.ADSGoogle Scholar
  46. Hundhausen, A. J.: 1972, 'Interplanetary Shock Waves and the Structure of Solar Wind Disturbances', Solar Wind, C. P. Sonett et al. (eds.), NASA Spec. Publ. SP 308, 393–417.Google Scholar
  47. Hundhausen, A. J.: 1998, in K. T. Strong et al. (eds.), 'Coronal Mass Ejections', The Many Faces of the Sun, A Summary of the Results From NASA's Solar Maximum Mission, Springer-Verlag, New York, pp. 143–200.Google Scholar
  48. Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979a, 'Forbush Decreases: Origin and Development in the Interplanetary Space', Nuovo Cimento 2C, 1–52.ADSGoogle Scholar
  49. Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979b, 'High Speed Solar Wind Streams and Galactic Cosmic Ray Modulation', Nuovo Cimento 2C, 421–438.ADSGoogle Scholar
  50. Iucci, N., Pinter, S., Parisi, M., Storini, M., and Villoresi, G.: 1986, 'The Longitudinal Asymmetry of the Interplanetary Perturbation Producing Forbush Decreases', Nuovo Cimento 9C, 39–50.ADSGoogle Scholar
  51. Iucci, N., Parisi, M., Signorini, C., Storini, M., and Villoresi, G.: 1989, 'Short-Term Cosmic-Ray Increases and Magnetic Cloud-Like Structures During Forbush Decreases', Astron. Astrophys. Suppl. 81, 367–391.ADSGoogle Scholar
  52. Kahler, S. W., Cliver, E. W., Cane, H. V., McGuire, R. E., Reames, D. V., Sheeley, N. R., Jr., and Howard, R. A.: 1987, 'Solar Energetic Proton Events and Coronal Mass Ejections Near Solar Minimum', Proc. 20th Int. Cosmic Ray Conf., Moscow 3, 121–123.Google Scholar
  53. Lepping, R. P., Jones, J. A., and Burlaga, L. F.: 1990, 'Magnetic Field Structure of Interplanetary Clouds at 1 AU', J. Geophys. Res. 95, 11 957–11 965.ADSGoogle Scholar
  54. le Roux, J. A. and Potgieter, M. S.:1991, 'The Simulation of Forbush Decreases With Time-Dependent Cosmic-Ray Modulation Models of Varying Complexity', Astron. Astrophys. 243, 531–545.ADSGoogle Scholar
  55. Lockwood, J. A.: 1971, 'Forbush Decreases in the Cosmic Radiation', Space Sci. Revs. 12, 658–715.ADSCrossRefGoogle Scholar
  56. Lockwood, J. A., Webber, W. R., and Jokipii, J. R.: 1986,' Characteristic Recovery Times of Forbush-Type Decreases in the Cosmic Radiation, I. Observations at Earth at Different Energies', J. Geophys. Res. 91, 2851–2857.ADSGoogle Scholar
  57. Lockwood, J. A., Webber, W. R., Debrunner, H.: 1991, 'Forbush Decreases and Interplanetary Magnetic Field Disturbances: Association With Magnetic Clouds', J. Geophys. R. 96, 11 587–11 604.ADSGoogle Scholar
  58. Morishita, I., Nagashima, K., Sakakibara, S., Munakata, K.: 1990, 'Long Term Changes of the Rigidity Spectrum of Forbush Decreases', Proc. 21st Int. Cosmic Ray Conf., Adelaide 6, 217–220.Google Scholar
  59. Mulder, M. S. and Moraal, H.: 1986, 'The Effect of Gradient and Curvature Drift on Cosmic-Ray Forbush Decreases', Astrophys. J. 303, L75–L78.CrossRefADSGoogle Scholar
  60. Nagashima, K., Sakakibara, S., Fujimoto, K., Tatsuoka, R., and Morishita, I.: 1990, 'Localized Pits and Peaks in Forbush Decrease, Associated with Stratified Structure of Disturbed and Undisturbed Magnetic Fields', Nuov. Cimento 13C, 551–587.ADSGoogle Scholar
  61. Nagashima, K., Fujimoto, K., Sakakibara, S., Morishita, I., and Tatsuoka, R.: 1992, 'Local-Time-Dependent Pre-IMF-Shock Decrease and Post-Shock Increase of Cosmic Rays, Produced Respectively by Their IMF-Collimated Outward and Inward Flows Across the Shock Responsible for Forbush Decrease', Planetary Space Sci., 40, 1109–1137.CrossRefADSGoogle Scholar
  62. Richardson, I. G. and Cane, H. V.: 1993, 'Signatures of Shock Drivers in the Solar Wind and Their Dependence on the Solar Source Location', J. Geophys. Res. 98, 15 295–15 304.ADSGoogle Scholar
  63. Richardson, I. G. and Reames, D. V.: 1993,' Bidirectional ~1 MeV amu1 Ion Intervals in 1973–1991 Observed by the Goddard Space Flight Center Instruments on IMP 8 and ISEE 3/ICE', Astrophys. J. Suppl. 85, 411–432.CrossRefADSGoogle Scholar
  64. Richardson, I. G. and Cane, H. V.: 1995, 'Regions of Abnormally Low Proton Temperature in the Solar Wind (1965–1991) and Their Association With Ejecta', J. Geophys. Res. 100, 23 397–23 412.CrossRefADSGoogle Scholar
  65. Richardson, I. G., Wibberenz, G., and Cane, H. V.: 1996, 'The Relationship Between Recurring Cosmic Ray Depressions and Corotating SolarWind Streams at ≤ 1 AU: IMP 8 and Helios 1 and 2 Anti-Coincidence Guard Rate Observations', J. Geophys. Res. 101, 13 483–13 496.ADSGoogle Scholar
  66. Richardson, I. G., Cane, H. V., and St. Cyr, O. C.: 1999, in S. R. Habbal, R. Esser, J. V. Hollweg, and P. A. Isenberg (eds.), 'Relationships Between Coronal and Interplanetary Structures as Inferred From Energetic Particle Observations', Solar Wind Nine, AIP 471, pp. 677–680.Google Scholar
  67. Richardson, I. G., Dvornikov, Sdobnov, V. E., and Cane, H. V.: 2000, 'Bidirectional Particle Flows at Cosmic Ray, and Lower (~ MeV) Energies, and Their Association With Interplanetary CMEs/Ejecta', J. Geophys. Res., in press.Google Scholar
  68. Robinson, R. D., Sheeley, Jr., N. R., Howard, R. A., Koomen, M. J., and Michels, D. J.: 1986, 'Properties of Metre-Wavelength Solar Radio Bursts Associated with Coronal Mass Ejections', Solar Phys. 105, 149–171.CrossRefADSGoogle Scholar
  69. Sanderson, T. R., Beeck, J., Marsden, R. G., Tranquille, C., Wenzel, K.-P., McKibben, R. B., and Smith, E. J.: 1990, 'A Study of the Relation Between Magnetic Clouds and Forbush Decreases', Proc. 21st Int. Cosmic Ray Conf., Adelaide 6, 251–254.Google Scholar
  70. Sheeley, N. R., Jr, Walters, J. H., Wang, Y.-M., and Howard, R. A.: 1999, 'Continuous Tracking of Coronal Outflows: Two Kinds of CMEs', J. Geophys. Res. 104, 24 739–24 767.CrossRefADSGoogle Scholar
  71. Simpson, J. A.: 1954, 'Cosmic-Radiation Intensity-Time Variations and Their Origin. III The Origin of 27-Day Variations', Phys. Rev. 94, 426–440.CrossRefADSGoogle Scholar
  72. St. Cyr, O. C. and Webb, D. F.: 1991, 'Activity Associated with Coronal Mass Ejections at Solar Minimum: SMM Observations From 1984-1986', Solar Phys. 136, 379–394.CrossRefADSGoogle Scholar
  73. St.Cyr, O. C. et al.: 1997,' White-Light Coronal Mass Ejections: A New Perspective From LASCO', 'Correlated Phenomena at the Sun, in the Heliosphere, and in Geospace', ESA SP 415, 103–110.ADSGoogle Scholar
  74. Tousey, R.: 1973, in M. J. Rycroft and S. K. Kuncorn (eds.), 'The Solar Corona', Space Res. XIII, Akademie-Verlag, Berlin, p. 713.Google Scholar
  75. Van Allen, J. A.: 1993, 'Recovery of Interplanetary Cosmic Ray Intensity Following the Great Forbush Decrease of Mid-1991', Geophys. Res. Lett. 20, 2797–2800.ADSGoogle Scholar
  76. Vandas, M., Fischer, S. F., Pelant, P., and Geranios, A.: 1993, 'Spheroidal Models of Magnetic Clouds and Their Comparison Eith Spacecraft Measurements', J. Geophys. Res. 98, 11 467–11 475.ADSGoogle Scholar
  77. Vanhoefer, O.: 1996, Master's Thesis, University of Kiel.Google Scholar
  78. Wang, Y. C. and Sheeley, N. R., Jr.: 1995, 'Solar Implications of Ulysses Interplanetary Field Measurements', Astrophys. J. 447, L143–L146.ADSGoogle Scholar
  79. Webber, W. R., Lockwood, J. A., and Jokipii, J. R.: 1986, 'Characteristics of Large Forbush-Type Decreases in the Cosmic Radiation 2. Observations at Different Heliocentric Radial Distances', J. Geophys. Res. 91, 4103–4110.ADSCrossRefGoogle Scholar
  80. Webb, D. F. and Howard, R. A.: 1994, 'The Solar Cycle Variations of the Occurrence Rate of Coronal Mass Ejections and the Solar Wind Mass Flux', J. Geophys. Res. 99, 4201–4220.CrossRefADSGoogle Scholar
  81. Wibberenz, G., Cane, H. V., and Richardson, I. G.: 1997, 'Two-Step Forbush Decreases in the Inner Solar System', Proc. 25th Int. Cosmic Ray Conf., Durban 1, 397–400.Google Scholar
  82. Wibberenz, G., le Roux, J. A., Potgieter, M. S., and Bieber, J. W.: 1998, 'Transient Effects and Disturbed Conditions', Space Sci. Rev. 83, 309–348.CrossRefADSGoogle Scholar
  83. Yoshida, S. and Akasofu, S. I.: 1965, 'A Study of the Propagation of Solar Particles in Interplanetary Space. The Center-Limb Effect of the Magnitude of Cosmic Ray Storms and of Geomagnetic Storms', Planetary Space Sci. 13, 435–448.CrossRefADSGoogle Scholar
  84. Zhang, G. and Burlaga, L. F.: 1988, 'Magnetic Clouds, Geomagnetic Disturbances, and Cosmic Ray Decreases', J. Geophys. Res. 93, 2511–2518.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Hilary V. Cane
    • 1
  1. 1.School of Mathematics and PhysicsUniversity of TasmaniaAustralia

Personalised recommendations