Journal of Computational Neuroscience

, Volume 9, Issue 3, pp 215–236 | Cite as

Parameter Estimation Methods for Single Neuron Models

  • Joël Tabak
  • C. Richard Murphey
  • L.E. Moore


With the advancement in computer technology, it has become possible to fit complex models to neuronal data. In this work, we test how two methods can estimate parameters of simple neuron models (passive soma) to more complex ones (neuron with one dendritic cylinder and two active conductances). The first method uses classical voltage traces resulting from current pulses injection (time domain), while the second uses measures of the neuron's response to sinusoidal stimuli (frequency domain). Both methods estimate correctly the parameters in all cases studied. However, the time-domain method is slower and more prone to estimation errors in the cable parameters than the frequency-domain method. Because with noisy data the goodness of fit does not distinguish between different solutions, we suggest that running the estimation procedure a large number of times might help find a good solution and can provide information about the interactions between parameters. Also, because the formulation used for the model's response in the frequency domain is analytical, one can derive a local sensitivity analysis for each parameter. This analysis indicates how well a parameter is likely to be estimated and helps choose an optimal stimulation protocol. Finally, the tests suggest a strategy for fitting single-cell models using the two methods examined.

model identification time domain frequency domain sensitivity analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali-Hassan WA, Saidel GM, Durand D (1992) Estimation of electrotonic parameters of neurons using an inverse fourier transform technique. IEEE Transactions on Biomedical Engineering 39:493-501.Google Scholar
  2. Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cell of the olfactory bulb. Journal of Neurophysiology 69:1948-1965.Google Scholar
  3. Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. Journal of Computational Neuroscience 3:313-336.Google Scholar
  4. Burke RE, ten Bruggencate G (1971) Electrotonic characteristics of alpha motoneurones of varying size. Journal of Physiology 212: 1-20.Google Scholar
  5. Byrne GD, Hindmarsh AC (1975) A polyalgorithm for the numerical solution of ordinary differential equations. ACM Transactions on Mathematical Software 1:71-96.Google Scholar
  6. Dennis JE, Gay DM, Welsch RE (1981) An adaptive nonlinear least-squares algorithm. ACM Transactions on Mathematical Software 7:348-368.Google Scholar
  7. Durand D (1984) The somatic shunt cable model for neurons. Biophysical Journal 46:645-653.Google Scholar
  8. Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin-Huxley models. Journal of Neurophysiology 70:2502-2518.Google Scholar
  9. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane currents and its application to conduction and excitation in nerve. Journal of Physiology 117:500-544.Google Scholar
  10. Kawato M (1984) Cable properties of a neuron model with nonuniform resistivity. Journal of Theoretical Biology 111:149-169.Google Scholar
  11. Major G, Larkman AU, Jack JJB (1990) Constraining nonuniqueness in passive electrical models of cortical pyramidal neurones. Journal of Physiology 430:13P.Google Scholar
  12. Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. Journal of Neuroscience 14:4613-4638.Google Scholar
  13. Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. Journal of General Physiology 55:497-523.Google Scholar
  14. Moore LE, Christensen BN (1985) White noise analysis of cable properties of neuroblastoma cells and lamprey central neurons. Journal of Neurophysiology 53:636-651.Google Scholar
  15. Moore LE, Hill RH, Grillner S (1993) Voltage-clamp frequency domain analysis of NMDA-activated neurons. Journal of Experimental Biology 175:59-87.Google Scholar
  16. Murphey CR, Moore LE, Buchanan JT (1995) Quantitative analysis of electrotonic structure and membrane properties of NMDA-activated lamprey spinal neurones. Neural Computation 7:486-506.Google Scholar
  17. Murphey CR, Tabak J, Moore LE, Buchanan J (1996) Estimation of membrane properties from step current measurement of Xenopus neurons. In: Bower J, ed. Computational Neuroscience. Academic Press, New York, pp. 107-112.Google Scholar
  18. Nelder JA, Mead J (1965) A simplex algorithm for function minimization. Computer Journal 7:308-313.Google Scholar
  19. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.Google Scholar
  20. Rall W (1969) Time constants and electronic length of membrane cylinders and neurons. Biophysical Journal 9:1483-1508.Google Scholar
  21. Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus cells: Comparison of sharp microelectrode and whole-cell recording. Journal of Neurophysiology 67:1346-1358.Google Scholar
  22. Stratford K, Mason A, Larkman A, Major G, Jack J (1989) The modelling of pyramidal neurones in the visual cortex. In: Durbin R, Miall C, Mitchison G, eds. The Computing Neuron. Addison-Wesley, Reading, MA. pp. 296-321.Google Scholar
  23. Surkis A, Peskin CS, Tranchina D, Leonard CS (1998) Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. Journal of Neurophysiology 80:2593-2607.Google Scholar
  24. Tabak J, Moore LE (1998) Simulation and parameter estimation study of a simple neuronal model for rhythm generation: Role of NMDA and non-NMDA receptors. Journal of Computational Neuroscience 5:209-235.Google Scholar
  25. Tabak J, Murphey CR, Moore LE (1996) Estimation methods in locomotion network activity. Society for Neuroscience Abstract 22:1372.Google Scholar
  26. Weyhing H, Borst A (1997) Parameter search in compartmental models using genetic algorithms. Society for Neuroscience Abstract 23:655.Google Scholar
  27. White JA, Manis PB, Young ED (1992) The parameter estimation problem for the somatic shunt model. Biological Cybernetics 66:307-318.Google Scholar
  28. Wright WN, Bardakjian BL, Valiante TA, Perez-Velazquez JL, Carlen P (1996) White noise approach for estimating the passive electrical properties of neurons. Journal of Neurophysiology 76:3442-3450.Google Scholar
  29. Zipser D (1992) Identification models of the nervous system. Neuroscience 47:853-862.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Joël Tabak
    • 1
    • 2
  • C. Richard Murphey
    • 3
  • L.E. Moore
    • 4
  1. 1.Equipe de NeurobiologieCNRS URA 256, Université de Rennes 1USA;
  2. 2.Laboratory of Neural ControlNINDS/NIHBethseda
  3. 3.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalveston
  4. 4.Laboratoire de Neurobiologie des Réseaux sensorimoteursUPRESA 7060USA

Personalised recommendations