Plant Molecular Biology

, Volume 44, Issue 5, pp 575–580 | Cite as

Proteomics: a link between genomics, genetics and physiology

  • Michel Zivy
  • Dominique de Vienne

Abstract

Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant biology. In the study of pleiotropic effects of mutants and in the analysis of responses to hormones and to environmental changes, the identification of involved metabolic pathways can be deduced from the function of affected proteins. In molecular quantitative genetics, proteomics can be used to map translated genes and loci controlling their expression, which can be used to identify proteins accounting for the variation of complex phenotypic traits. Linking gene expression to cell metabolism on the one hand and to genetic maps on the other, proteomics is a central tool for functional genomics.

genetics genome plant physiology proteome two-dimensional electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, R.D., Vargas, J.R., Palagi, P.M., Walther, D. and Hochstrasser, D.F. 1997. Melanie II: a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis. 18: 2735–2748.PubMedGoogle Scholar
  2. Bahrman, N., Zivy, M., Damerval, C. and Baradat, P. 1994. Organization of the variability of abundant proteins in seven geographical origins of maritime pine (Pinus pinaster Ait.). Theor. Appl. Genet. 88: 407–411.Google Scholar
  3. Burstin, J., de Vienne, D., Dubreuil, P. and Damerval, C. 1994. Molecular markers and protein quantities as genetic descriptors in maize. I. Genetic diversity among 21 inbred lines. Theor. Appl. Genet. 89: 943–950.Google Scholar
  4. Chang, W.W., Huang, L., Shen, M., Webster, C., Burlingame, A.L. and Roberts, J.K. 2000. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol. 122: 295–318.PubMedGoogle Scholar
  5. Chevallet, M., Santoni, V., Poinas, A., Rouquie, D., Fuchs, A., Kieffer, S., Rossignol, M., Lunardi, J., Garin, J. and Rabilloud, T. 1998. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19: 1901–1909.PubMedGoogle Scholar
  6. Costa, P., Bahrman, N., Frigerio, J. M., Kremer, A. and Plomion, C. 1998. Water-deficit-responsive proteins in maritime pine. Plant Mol Biol. 38: 587–596.PubMedGoogle Scholar
  7. Damerval, C. and Le Guilloux, M. 1998. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development. Mol. Gen. Genet. 257: 354–361.PubMedGoogle Scholar
  8. Damerval, C., Maurice, A., Josse, J.M. and de Vienne, D. 1994. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301.PubMedGoogle Scholar
  9. Denis, V., Boucherie, H., Monribot, C. and Daignan-Fornier, B. 1998. Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol. Microbiol. 30: 557–566.PubMedGoogle Scholar
  10. Gygi, S.P., Rochon, Y., Franza, B.R. and Aebersold, R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19: 1720–1730.PubMedGoogle Scholar
  11. Herbik, A., Giritch, A., Horstmann, C., Becker, R., Balzer, H.J., Baumlein, H. and Stephan, U.W. 1996. Iron and copper nutritiondependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol. 111: 533–540.PubMedGoogle Scholar
  12. Kearsey M.J. and Farquhar A.G.L., 1998. QTL analysis in plants: where are we now? Heredity 80: 137–142.PubMedGoogle Scholar
  13. Leymarie, J., Damerval, C., Marcotte, L., Combes, V. and Vartanian, N. 1996. Two-dimensional protein patterns of Arabidopsis wild-type and auxin insensitive mutants, axr1, axr2, reveal interactions between drought and hormonal responses. Plant Cell Physiol. 37: 966–975.PubMedGoogle Scholar
  14. Moons, A., Gielen, J., Vandekerckhove, J., Van der Straeten, D., Gheysen, G. and Van Montagu, M. 1997. An abscisic-acid-and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202: 443–454.PubMedGoogle Scholar
  15. O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  16. Rey, P., Pruvot, G., Becuwe, N., Eymery, F., Rumeau, D. and Peltier, G. 1998. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J. 13: 97–107.Google Scholar
  17. Riccardi, F., Gazeau, P., de Vienne, D. and Zivy, M. 1998. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol. 117: 1253–1263.PubMedGoogle Scholar
  18. Santoni, V., Delarue, M., Caboche, M. and Bellini, C. 1997. A comparison of two-dimensional electrophoresis data with phenotypical traits in Arabidopsis leads to the identification of a mutant (cri1) that accumulates cytokinins. Planta 202: 62–69.CrossRefPubMedGoogle Scholar
  19. Thiellement, H., Bahrman, N., Damerval, C., Plomion, C., Rossignol, M., Santoni, V., de Vienne, D. and Zivy, M. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 20: 2013–2026.PubMedGoogle Scholar
  20. Touzet, P., Morin, C., Damerval, C., Le Guilloux, M., Zivy, M. and de Vienne, D. 1995. Characterizing allelic proteins for genome mapping in maize. Electrophoresis 16: 1289–1294.PubMedGoogle Scholar
  21. de Vienne, D., Burstin, J., Gerber, S., Leonardi, A., Le Guilloux, M., Murigneux, A., Beckert, M., Bahrman, N., Damerval, C. and Zivy, M. 1996. Two-dimensional electrophoresis of proteins as a source of monogenetic and codominant markers for population genetics and mapping the expressed genome. Heredity 76: 166–177.Google Scholar
  22. de Vienne, D., Leonardi, A., Damerval, C. and Zivy, M. 1999. Genetics of proteome variation for QTL characterization: application to drought stress responses in maize. J. Exp. Bot. 50: 303–309.Google Scholar
  23. Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L. and Humphery-Smith, I. 1995. Progress with gene-product mapping of the mollicutes: mycoplasma genitalium. Electrophoresis 16: 1090–1094.PubMedGoogle Scholar
  24. Yates J.R. III. 1998. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 33: 1–19.PubMedGoogle Scholar
  25. Zivy, M., el Madidi, S. and Thiellement, H. 1995. Distance indices in a comparison between the A, D, I and R genomes of the Triticeae tribe. Electrophoresis 16: 1295–1300.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michel Zivy
    • 1
  • Dominique de Vienne
    • 2
  1. 1.CNRSFrance
  2. 2.University Paris SudFrance

Personalised recommendations