Glycoconjugate Journal

, Volume 17, Issue 3–4, pp 143–151 | Cite as

Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain

  • Sen-itiroh Hakomori
Article

Abstract

Glycosphingolipids (GSLs) and sphingomyelin in animal cells are clustered and organized as membrane microdomains closely associated with various signal transducer molecules such as cSrc, Src family kinases, small G-proteins (e.g., RhoA, Ras), and focal adhesion kinase. GSL clustering in such microdomains causes adhesion to complementary GSLs on the surface of counterpart cells or presented on plastic surfaces, through carbohydrate-to-carbohydrate interaction. GSL-dependent cell adhesion in microdomain causes activation of the signal transducers, leading to cell phenotypic changes. A retrospective of the development of this concept, and current status of our studies, are presented.

glycosphingolipid signaling domain (GSD) cell adhesion detergent-insoluble material (DIM) signal transducer molecules transcription factors GM3 Gal-globoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tillack TW, Allietta M, Moran RE, Young WW-J, Biochim. Biophys Acta 733, 15–24 (1983).Google Scholar
  2. 2.
    Rock P, Allietta M, Young WWJ, Thompson TE, Tillack TW, Biochemistry 29, 8484–90 (1990).Google Scholar
  3. 3.
    Rock P, Allietta M, Young WWJ, Thompson TE, Tillack TW, Biochemistry 30, 19–25 (1991).Google Scholar
  4. 4.
    Rahmann H, Rösner H, Körtje K-H, Beitinger H, Veybold V, in Biological function of gangliosides (Progress in Brain Research, Vol. 101) (Svennerholm L, Asbury AK, Reisfeld RA, Sandhoff K, Suzuki K, Tettamanti G, Toffano G, eds), (Elsevier, Amsterdam 1994), pp. 127–45.Google Scholar
  5. 5.
    Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR, Pavan AJ, Lipid Res 38, 969–80 (1997).Google Scholar
  6. 6.
    Forstner GG, Tanaka K, Isselbacher KJ, Biochem J 109, 51–9 (1968).Google Scholar
  7. 7.
    Forstner GG, Wherrett JR, Biochim Biophys Acta 306, 446–59 (1973).Google Scholar
  8. 8.
    Hakomori S, Strycharz GB, Biochemistry 7, 1279–86 (1968).Google Scholar
  9. 9.
    Yang H-J, Hakomori S, J Biol Chem 246, 1192–1200 (1971).Google Scholar
  10. 10.
    Simons K, van Meer G, Biochemistry 27, 6197–6202 (1988).Google Scholar
  11. 11.
    Lisanti MP, Sargiacomo M, Graeve L, Saltiel AR, Rodriguez-Boulan E, Proc Natl Acad Sci USA 85, 9557–61 (1988).Google Scholar
  12. 12.
    Brown DA, Crise B, Rose JK, Science 245, 1499–1501 (1989).Google Scholar
  13. 13.
    Lisanti MP, Caras IW, Davitz MA, Rodriguez-Boulan EJ, Cell Biol 109, 2145–56 (1989).Google Scholar
  14. 14.
    Brown DA, Rose JK, Cell 68, 533–44 (1992).Google Scholar
  15. 15.
    Okada Y, Mugnai G, Bremer EG, Hakomori S, Exp Cell Res 155, 448–56 (1984).Google Scholar
  16. 16.
    Brown DA, London E, Biochem Biophys Res Commun 240, 1–7 (1997).Google Scholar
  17. 17.
    Simons K, Ikonen E, Nature 387, 569–72 (1997).Google Scholar
  18. 18.
    Anderson RGW, Annu Rev Biochem 67, 199–225 (1998).Google Scholar
  19. 19.
    Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H, Science 254, 1016–9 (1991).Google Scholar
  20. 20.
    Thomas PM, Samelson LE, J Biol Chem 267, 12317–22 (1992).Google Scholar
  21. 21.
    Minoguchi K, Swaim WD, Berenstein EH, Sirganian RP, J Biol Chem 269, 5249–54 (1994).Google Scholar
  22. 22.
    Kasahara K,Watanabe Y, Yamamoto T, Sanai Y, J Biol Chem 272, 29947–53 (1997).Google Scholar
  23. 23.
    Nores GA, Dohi T, Taniguchi M, Hakomori S, J Immunol 139, 3171–6 (1987).Google Scholar
  24. 24.
    Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S, J Biol Chem 267, 17264–70 (1992).Google Scholar
  25. 25.
    Yamamura S, Handa K, Hakomori S, Biochem Biophys Res Commun 236, 218–22 (1997).Google Scholar
  26. 26.
    Iwabuchi K, Handa K, Hakomori S, J Biol Chem 273, 33766–73 (1998).Google Scholar
  27. 27.
    Yu S, Withers DA, Hakomori S, J Biol Chem 273, 2517–25 (1998).Google Scholar
  28. 28.
    Yu S, Withers DA, Yamamura S, Handa K, Hakomori S, Glycoconj J 14 (Suppl.), S53(1997).Google Scholar
  29. 29.
    Prinetti A, Iwabuchi K, Hakomori S, J Biol Chem 274, 20916–24 (1999).Google Scholar
  30. 30.
    Schnitzer JE, Oh P, Pinney E, Allard JJ. Cell Biol 127, 1217–32 (1994).Google Scholar
  31. 31.
    Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, Abraham SN, Nature 389, 636–9 (1997).Google Scholar
  32. 32.
    Zhang Y, Iwabuchi K, Nunomura S, Hakomori S, Biochemistry, in press (2000).Google Scholar
  33. 33.
    Iwabuchi K, Zhang Y, Handa K, SinaYè P, Hakomori S, J Biol Chem, in press (2000).Google Scholar
  34. 34.
    Hakomori S, J Biol Chem 265, 18713–6 (1990).Google Scholar
  35. 35.
    Hakomori S, Igarashi Y, J Biochem (Tokyo) 118, 1091–1103 (1995).Google Scholar
  36. 36.
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S, J Biol Chem 273, 9130–8 (1998).Google Scholar
  37. 37.
    Maecker HT, Todd SC, Levy S, FASEB J 11, 428–42 (1997).Google Scholar
  38. 38.
    Bremer EG, Hakomori S, Bowen-Pope DF, Raines EW, Ross R, J Biol Chem 259, 6818–25 (1984).Google Scholar
  39. 39.
    Bremer EG, Schlessinger J, Hakomori S, J Biol Chem 261, 2434–40 (1986).Google Scholar
  40. 40.
    Hanai N, Nores GA, MacLeod C, Torres-Mendez C-R, Hakomori S, J Biol Chem 263, 10915–10921 (1988).Google Scholar
  41. 41.
    Nojiri H, Stroud MR, Hakomori S, J Biol Chem 266, 4531–4537 (1991).Google Scholar
  42. 42.
    Mutoh T, Tokuda A, Miyada T, Hamaguchi M, Fujiki N, Proc Natl Acad Sci USA 92, 5087–91 (1995).Google Scholar
  43. 43.
    Liu P, Ying Y, Ko Y-G, Anderson RGW, J Biol Chem 271, 10299–303 (1996).Google Scholar
  44. 44.
    Mineo C, James GL, Smart EJ, Anderson RGW, J Biol Chem 271, 11930–5 (1996).Google Scholar
  45. 45.
    Liu P, Ying Y, Anderson RGW, Proc Natl Acad Sci USA 94, 13666–70 (1997).Google Scholar
  46. 46.
    Clausen H, Hakomori S, Vox Sang 56, 1–20 (1989).Google Scholar
  47. 47.
    Marcus DM, Kundu SK, Suzuki A, Semin Hematol 18, 63–71 (1981).Google Scholar
  48. 48.
    Oriol R, in Blood cell biochemistry: Vol. 6. Molecular basis of human blood group antigens (Cartron JP, Rouger P, eds), (Plenum Press, New York 1995), pp. 37–73Google Scholar
  49. 49.
    Fishman PH, Brady RO, Science 194, 906–15 (1976).Google Scholar
  50. 50.
    Kanfer JN, in Handbook of lipid research 3: Sphingolipid biochemistry (Kanfer JN, Hakomori S, eds), (Plenum Press, New York 1983) pp. 437–71.Google Scholar
  51. 51.
    Karlsson K-A, Annu Rev Biochem 58, 309–50 (1989).Google Scholar
  52. 52.
    Hakomori S, Kannagi R, J Natl Cancer Inst 71, 231–51 (1983).Google Scholar
  53. 53.
    Hakomori S, Acta Anatomica 161, 79–90 (1998).Google Scholar
  54. 54.
    Yang LJ-S, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL, Proc Natl Acad Sci USA 93, 814–18 (1996).Google Scholar
  55. 55.
    Handa K, Stroud MR, Hakomori S, Biochemistry 36, 12412–20 (1997).Google Scholar
  56. 56.
    Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ, J Biol Chem 273, 11205–211 (1998).Google Scholar
  57. 57.
    Hakomori S, Pure & Appl Chem 63, 473–82 (1991).Google Scholar
  58. 58.
    Bovin NV, in Glycosciences: Status and perspectives (Gabius HJ, Gabius S, eds), (Chapman & Hall, London 1997), pp. 27789.Google Scholar
  59. 59.
    Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A, Glycobiology 8(10), xi-xviii (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sen-itiroh Hakomori
    • 1
    • 2
  1. 1.Pacific Northwest Research InstituteSeattleUSA;
  2. 2.Departments of Pathobiology and MicrobiologyUniv. of WashingtonSeattle

Personalised recommendations