Advertisement

Plant Molecular Biology

, Volume 44, Issue 4, pp 559–574 | Cite as

Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize

  • Jean-Louis Magnard
  • Erwan Le Deunff
  • Jezabel Domenech
  • Peter M. Rogowsky
  • Pilar S. Testillano
  • Mireille Rougier
  • María C. Risueño
  • Philippe Vergne
  • Christian Dumas
Article

Abstract

Reproduction in flowering plants is characterized by double fertilization and the resulting formation of both the zygotic embryo and the associated endosperm. In many species it is possible to experimentally deviate pollen development towards an embryogenic pathway. This developmental switch, referred to as microspore embryogenesis or androgenesis, leads to the formation of embryos similar to zygotic embryos. In a screen for genes specifically expressed during early androgenesis, two maize genes were isolated by mRNA differential display. Both genes represent new molecular markers expressed at a very young stage of androgenic embryogenesis. When their expression pattern was studied during normal reproductive development, both showed early endosperm-specific expression. Investigation of the cytological features of young androgenic embryos revealed that they present a partially coenocytic organization similar to that of early endosperm. These findings suggest that maize androgenesis may possibly involve both embryogenesis and the establishment of endosperm-like components.

androgenesis differential display embryo-surrounding region in situ hybridization microspore culture Zea mays L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.CrossRefPubMedGoogle Scholar
  3. Bairoch, A., Bucher, P. and Hofmann, K. 1997. The PROSITE database, its status in 1997. Nucl. Acids Res. 25: 217–221.Google Scholar
  4. Barloy, D., Denis, L. and Beckert, M. 1989. Comparison of the aptitude for anther culture in some androgenetic doubled haploid maize lines. Maydica 34: 303–308.Google Scholar
  5. Barnabas, B., Fransz, P.F. and Schel, J.H.N. 1987. Ultrastructural studies on pollen embryogenesis in maize (Zea mays L.). Plant Cell Rep. 6: 212–215.Google Scholar
  6. Becker, H.-A., Hueros, G., Maitz, M., Varotto, S., Serna, A. and Thompson, R.D. 1999. Domains of gene expression in developing endosperm. In: M. Cresti, G. Cai and A. Moscatelli (Eds.) Fertilization in Higher Plants, Springer-Verlag, New York, pp. 361–376.Google Scholar
  7. Berger, F. 1999. Endosperm development. Curr. Opin. Plant Biol. 2: 28–32.PubMedGoogle Scholar
  8. Breton, C., Chaboud, A., Matthys-Rochon, E., Bates, E.E.M., Cock, J.M., Fromm, H. and Dumas, C. 1995. PCR-generated cDNA library of transition-stage maize embryos: cloning and expression of calmodulin genes during early embryogenesis. PlantMol. Biol. 27: 105–113.Google Scholar
  9. Brown, R.C., Lemmon, B., Doan, D., Linnestad, C. and Olsen, O.-A. 1996. The reprogrammed embryo: the endosperm as a quick route to understanding embryogenesis. In: T.L. Wang and A. Cuming (Eds.) Embryogenesis, the Generation of a Plant, BIOS Scientific Publishers, Oxford, pp. 159–172.Google Scholar
  10. Burr, B. and Burr, F.A. 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet. 7: 55–60.PubMedGoogle Scholar
  11. Chaudhury, A.M., Craig, S., Dennis, E.S. and Peacock, W.J. 1998. Ovule and embryo development, apomixis and fertilization. Curr. Opin. Plant Biol. 1: 26–31.PubMedGoogle Scholar
  12. Cowen, N.M., Johnson, C.D., Armstrong, K., Miller, M., Woosley, A., Pescitelli, S., Skokut, M., Belmar, S. and Petolino, J.F. 1992. Mapping genes conditioning in vitro androgenesis in maize using RFLP analysis. Theor. Appl. Genet. 84: 720–724.Google Scholar
  13. Friedman, W.E. 1992. Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. Science 255: 336–339.Google Scholar
  14. Friedman, W.E. 1994. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am. J. Bot. 81: 1468–1486.Google Scholar
  15. Friedman, W.E. 1998. The evolution of double fertilization and endosperm: a ‘historical’ perspective. Sex. Plant Reprod. 11: 6–16.Google Scholar
  16. Gagliardi, D., Breton, C., Chaboud, A., Vergne, P. and Dumas, C. 1995. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol. Biol. 29: 841–856.PubMedGoogle Scholar
  17. Gaillard, A., Vergne, P. and Beckert, M. 1991. Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep. 10: 55–58.Google Scholar
  18. Gaillard, A., Matthys-Rochon, E. and Dumas, C. 1992. Selection of microspore derived embryogenic structures in maize related to transformation potential by microinjection. Bot. Acta 105: 313–318.Google Scholar
  19. Gerdes, J.T. and Tracy, W.F. 1993. Pedigree diversity within the Lancaster Surecrop heterotic group of maize. Crop Sci. 33: 334–337.Google Scholar
  20. Goldberg, R.B., de Paiva, G. and Yadegari, R. 1994. Plant embryogenesis: zygote to seed. Science 266: 605–614.Google Scholar
  21. Gonzalez-Melendi, P., Testillano, P.S., Ahmadian, P., Fadón, B. and Risueño, M.C. 1996. New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. Eur. J. Cell Biol. 69: 373–386.PubMedGoogle Scholar
  22. Guha, S. and Maheshwari, S.C. 1964. In vitro production of embryos from anthers of Datura. Nature 204: 497.Google Scholar
  23. Guha, S. and Maheshwari, S.C. 1966. Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212: 97–98.Google Scholar
  24. Harada, J.J. 1999. Signalling in plant embryogenesis. Curr. Opin. Plant Biol. 2: 23–27.PubMedGoogle Scholar
  25. Holm, P.B., Knudsen, S., Mouritzen, P., Negri, D., Olsen, F.L. and Roué, C. 1994. Regeneration of fertile barley plants from mechanically isolated protoplasts of fertilized egg cell. Plant Cell 6: 531–543.PubMedGoogle Scholar
  26. Hueros, G., Varotto, S., Salamini, F. and Thompson, R.D. 1995. Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7: 747–757.PubMedGoogle Scholar
  27. Huang, B. 1986. Ultrastructural aspects of pollen embryogenesis in Hordeum, Triticum and Paeonia. In: H. Hu and H. Yang (Eds.) Haploids of Higher Plants in vitro, Springer-Verlag, Berlin/Heidelberg, pp. 91–117.Google Scholar
  28. Kranz, E., von Wiegen, P., Quader, H. and Lörz, H. 1998. Endosperm development after fusion of isolated, single maize sperm and central cells in vitro. Plant Cell 10: 511–524.PubMedGoogle Scholar
  29. Laux, T. and Jürgens, G. 1997. Embryogenesis: a new start in life. Plant Cell 9: 989–1000.PubMedGoogle Scholar
  30. Leduc, N., Matthys-Rochon, E., Rougier, M., Mogensen, L., Holm, P., Magnard, J.-L. and Dumas, C. 1996. Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev. Biol. 177: 190–203.PubMedGoogle Scholar
  31. Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.PubMedGoogle Scholar
  32. Mansfield, S.G. and Briarty, L.G. 1990. Development of free nuclear endosperm in Arabidopsis thaliana L. Arabidopsis Inf. Serv. 27: 53–64.Google Scholar
  33. McCabe, P.F., Valentine, T.A., Forsberg, L.S. and Pennell, R.I. 1997. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9: 2225–2241.PubMedGoogle Scholar
  34. Mól, R., Matthys-Rochon, E. and Dumas, C. 1994. The kinetics of cytological events during double fertilization in Zea mays L.Plant J. 5: 197–206.Google Scholar
  35. Murigneux, A., Bentolila, S., Hardy, T., Baud, S., Guitton, C., Jullien, H., Ben Tahar, S., Freyssinet, G. and Beckert, M. 1994. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37: 970–976.Google Scholar
  36. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.PubMedGoogle Scholar
  37. Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.CrossRefGoogle Scholar
  38. Nitsch, J.-P. and Nitsch, C. 1969. Haploid plants from pollen grains. Science 163: 85–87.Google Scholar
  39. Olsen, O.-A. 1998. Endosperm developments. Plant Cell 10: 485–488.PubMedGoogle Scholar
  40. Olsen, O.-A., Brown, R.C. and Lemmon, B.E. 1995. Pattern and process of wall formation in developing endosperm. BioEssays 17: 803–812.Google Scholar
  41. Olsen, O.-A., Linnestad, C. and Nichols, S.E. 1999. Developmental biology of the cereal endosperm. Trends Plant Sci. 4: 253–257.PubMedGoogle Scholar
  42. Opsahl-Ferstad, H.-G., Le Deunff, E., Dumas, C. and Rogowsky, P.M. 1997. ZmESR, a novel endosperm specific gene expressed in a restricted region around the maize embryo. Plant J. 12: 235–246.PubMedGoogle Scholar
  43. Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.Google Scholar
  44. Ray, A. 1998. New paradigms in plant embryogenesis: maternal control comes in different flavors. Trends Plant Sci. 3: 325–327.Google Scholar
  45. Reynolds, T.L. 1997. Pollen embryogenesis. Plant Mol. Biol. 33: 1–10.PubMedGoogle Scholar
  46. Richert, J., Kranz, E., Lörz, H. and Dresselhaus, T. 1996. A reverse transcriptase-polymerase chain reaction assay for gene expression studies at the single cell level. Plant Sci. 114: 93–99.Google Scholar
  47. Russell, D.A. and Sachs, M.M. 1989. Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1: 793–803.CrossRefPubMedGoogle Scholar
  48. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  49. Schel, J.H.N., Kieft, H. and van Lammeren, A.A.M. 1984. Interaction between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can. J. Bot. 62: 2842–2853.Google Scholar
  50. Schweizer, L., Yerk-Davis, G.L., Phillips, R.L., Srienc, F. and Jones, R.J. 1995. Dynamics of maize endosperm development and DNA endoreduplication. Proc. Natl. Acad. Sci. USA 92: 7070–7074.PubMedGoogle Scholar
  51. Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31–43.PubMedGoogle Scholar
  52. Sunderland, N., Roberts, M., Evans, L.J. and Wildon, D.C. 1979. Multicellular pollen formation in cultured barley anthers. J. Exp. Bot. 30: 1133–1144.Google Scholar
  53. Touraev, A., Vicente, O. and Heberle-Bors, E. 1997. Initiation of microspore embryogenesis by stress. Trends Plant Sci. 2: 297–302.Google Scholar
  54. van Hengel, A.J., Guzzo, F., van Kammen, A. and de Vries, S.C. 1998. Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol. 117: 43–53.PubMedGoogle Scholar
  55. Vergne, P., Delvallée, I. and Dumas, C. 1987. Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol. 62: 299–304PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jean-Louis Magnard
    • 1
  • Erwan Le Deunff
    • 1
  • Jezabel Domenech
    • 2
  • Peter M. Rogowsky
    • 1
  • Pilar S. Testillano
    • 2
  • Mireille Rougier
    • 1
  • María C. Risueño
    • 2
  • Philippe Vergne
    • 1
  • Christian Dumas
    • 1
  1. 1.Reproduction et Développement des Plantes, Ecole Normale Supérieure de LyonUMR 5667 CNRS-INRA-UCB Lyon 1Lyon cedex 07France
  2. 2.Nuclear Organization during Plant DevelopmentCentro de Investigaciones Biologicas, CSICMadridSpain

Personalised recommendations