Applied Intelligence

, Volume 13, Issue 3, pp 205–213 | Cite as

Neural Nets Trained by Genetic Algorithms for Collision Avoidance

  • Nicolas Durand
  • Jean-Marc Alliot
  • Frédéric Médioni


As air traffic keeps increasing, many research programs focus on collision avoidance techniques. For short or medium term avoidance, new headings have to be computed almost on the spot, and feed forward neural nets are susceptible to find solutions in a much shorter amount of time than classical avoidance algorithms (A*, stochastic optimization, etc.) In this article, we show that a neural network can be built with unsupervised learning to compute nearly optimal trajectories to solve two aircraft conflicts with the highest reliability, while computing headings in a few milliseconds.

air traffic control collision avoidance neural networks genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.M. Schuster, F.R. Petroski, R.K. Sciambi, and M. Mc Stokrp, "AERA2 functional design and performance description," Technical Report, MITRE, September 1983. MtR-83W136.Google Scholar
  2. 2.
    W.P. Niedringhaus, "A mathematical formulation for planning automated aircraft separation for AERA3," Technical Report, FAA, 1989. DOT/FAA/DS-89/20.Google Scholar
  3. 3.
    W.P. Niedringhaus, "Automated planning function for AERA3: Manoeuver Option Manager," Technical Report, FAA, 1989. DOT/FAA/DS-89/21.Google Scholar
  4. 4.
    F. Krella et al., "Arc 2000 scenario (version 4.3)," Technical Report, Eurocontrol, April 1989.Google Scholar
  5. 5.
    M. Schoenauer, E. Ronald, and S. Damour, "Evolving nets for control," Technical Report, Ecole Polytechnique, 1993.Google Scholar
  6. 6.
    A. Fadda, "Utilisation de techniques neuro-genetiques pour la resolution de problemes inverses," Ph.D. Thesis, Ecole Polytechnique de Paris, 1998.Google Scholar
  7. 7.
    TCAS-III collision avoidance algorithms, Version 3, Technical Report, The MITRE Corporation, November 1990.Google Scholar
  8. 8.
    H. Gruber, Comparaison de diverses m´ethodes d'Intelligence Artificielle pour la r´esolution de conflit en contrôle de trafic a´erien, Rapport de Stage, Centre d'Etudes de la Navigation A´erienne, 1992.Google Scholar
  9. 9.
    K. Zeghal, "Vers une th`eorie de la coordination d'actions, application `a la navigation a´erienne," Ph.D. Thesis, Universit´e Paris VI, 1994.Google Scholar
  10. 10.
    K. Zeghal, "A reactive approach for distributed air traffic control," in International Conference on Artificial Intelligence & Expert Systems, Mai, 1993.Google Scholar
  11. 11.
    K. Zeghal, "A comparison of different approaches based on force fields for coordination among multiple mobile," in IEEE International Conference on Intelligent Robotic System, IROS, Mai, 1993.Google Scholar
  12. 12.
    N. Durand, "Optimisation de Trajectoires pour la R´esolution de Conflits en Route," Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, 1996.Google Scholar
  13. 13.
    Bryson and Ho, Applied Optimal Control, Hemisphere Publishing Corporation: New York, 1975.Google Scholar
  14. 14.
    R.F. Hartl, S.P. Sethi, and R.G. Vickson, "A survey ot the maximum principles for optimal control problems with state constraints," SIAM Review, 1995.Google Scholar
  15. 15.
    A.R. Conn, N. Gould, and Ph.L. Toint, "A comprehensive description of LANCELOT," Technical Report, IBM T.J. Watson Research Center, 1992. Report 91/10.Google Scholar
  16. 16.
    N. Durand, J.M. Alliot, and J. Noailles, "Automatic aircraft con-flict resolution using genetic algorithms," in Proceedings of the Symposium on Applied Computing, Philadelphia, ACM, 1996.Google Scholar
  17. 17.
    N. Durand and J.M Alliot, "Optimal resolution of en route conflicts," in 1 ST U.S.A/EUROPE ATM R & D Seminar, Mai 1997.Google Scholar
  18. 18.
    D. Goldberg, Genetic Algorithms, Addison Wesley: Reading, MA 1989: ISBN: 0–201–15767–5.Google Scholar
  19. 19.
    J.M. Alliot, "A genetic algorithm to improve an othello program," in Artificial Evolution 95, Springer: Berlin, 1995.Google Scholar
  20. 20.
    Z. Michalewicz, Genetic algorithms C data structuresD evolution programs, Springer-Verlag: Berlin 1992, ISBN: 0–387–55387–.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Nicolas Durand
    • 1
  • Jean-Marc Alliot
    • 2
  • Frédéric Médioni
    • 3
  1. 1.Centre d'Etudes de la Navigation ArienneFrance
  2. 2.Centre d'Etudes de la Navigation ArienneFrance
  3. 3.Centre de Mathématiques Appliquées de l'Ecole PolytechniqueFrance

Personalised recommendations