Autonomous Robots

, Volume 10, Issue 1, pp 107–124

Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules

  • Daniela Rus
  • Marsette Vona
Article

Abstract

We discuss a robotic system composed of Crystalline modules. Crystalline modules can aggregate together to form distributed robot systems. Crystalline modules can move relative to each other by expanding and contracting. This actuation mechanism permits automated shape metamorphosis. We describe the Crystalline module concept and show the basic motions that enable a Crystalline robot system to self-reconfigure. We present an algorithm for general self-reconfiguration and describe simulation experiments.

self-reconfiguration robots modular robots reconfiguration planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chirikjian, G., Pamecha, A., and Ebert-Uphoff, I. 1996. Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems, 13(5):317–388.Google Scholar
  2. Fukuda, T. and Kawauchi,Y. 1990. Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In Proceedings of the IEEE Conference on Robotics and Automation, pp. 662–667.Google Scholar
  3. Cohen, R., Lipton, M., Dai, M., and Benhabib, B. 1992. Conceptual design of a modular robot. Journal of Mechanical Design, 114:117–125.Google Scholar
  4. Hamlin, G. and Sanderson, A. 1996. Tetrabot modular robotics: Prototype and experiments. In Proceedings of the IEEE/RSJ International Symposium of Robotics Research, Osaka, Japan, pp. 390–395.Google Scholar
  5. Hosokawa, K., Shimoyama, I., and Miura, H. 1995. Dynamics of self-assembling systems-Analogy with chemical kinetics. Artificial Life, 1(4):172–180.Google Scholar
  6. Kotay, K., Rus, D., Vona, M., and McGray, C. 1998a. The self-reconfigurable robotic molecule. In Proceedings of the 1998 International Conference on Robotics and Automation.Google Scholar
  7. Kotay, K., Rus, D., Vona, M., and McGray, C. 1998b. The self-reconfiguring robotic molecule: Design and control algorithms. In the 1998 Workshop on Algorithmic Foundations of Robotics.Google Scholar
  8. Kotay, K. and Rus, D. 1998. Motion synthesis for the self-reconfiguring robotic molecule. In Proceedings of the 1998 International Conference on Intelligent Robots and Systems, 26(2/3):217–232.Google Scholar
  9. Kotay, K. and Rus, D. 1999. Locomotion versatility through self-reconfiguration. Robotics and Autonomous Systems, 26(2/3):217–232.Google Scholar
  10. McGray, C. and Rus, D. 1998. Motion self-reconfiguring molecules as 3D metamorphic squares. In Proceedings of the 1998 International Conference on Intelligent Robots and Systems.Google Scholar
  11. Murata, S., Kurokawa, H., and Kokaji, S. 1994. Self-assembling machine. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego.Google Scholar
  12. Murata, S., Kurokawa, H., Tomita, K., and Kokaji, S. 1997. Self-assembling method for mechanical structure. Artif. Life Robotics, 1:111–115.Google Scholar
  13. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., and Kokaji, S. 1998. A 3-D self-reconfigurable structure. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven.Google Scholar
  14. Pamecha, A., Chiang, C.-J., Stein, D., and Chirikjian, G. 1996. Design and implementation of metamorphic robots. In Proceedings of the 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference, Irvine, CA.Google Scholar
  15. Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G.S. 1997. Useful metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13(4):531–545.Google Scholar
  16. Paredis, C. and Khosla, P. 1995. Design of modular fault tolerant manipulators. In The First Workshop on the Algorithmic Foundations of Robotics, K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson (Eds.), pp. 371–383, A.K. Peters, Boston, MA.Google Scholar
  17. Rus, D. 1998. Self-reconfiguring robots. IEEE Intelligent Systems, 13(4):2–5.Google Scholar
  18. Rus, D. and Vona, M. 1999. Self-reconfiguration planning with unit compressible modules. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, pp. 2513–2520.Google Scholar
  19. Rus, D. and Vona, M. A Physical implementation of the crystalline robot. In 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA.Google Scholar
  20. Tanie, K. and Maekawa,H. 1993. Self-reconfigurable cellular robotic system. US Patent 5361186.Google Scholar
  21. Tomita, K., Murata, S., Yoshida, E., Kurokawa, H., and Kokaji, S. 1996. Reconfiguration method for a distributed mechanical system. In Distributed Autonomous Robotic Systems 2, Springer Verlag, pp. 17–25.Google Scholar
  22. Yim, M. 1993. A reconfigurable modular robot with multiple modes of locomotion. In Proceedings of the 1993 JSME Conference on Advanced Mechatronics, Tokyo, Japan.Google Scholar
  23. Yim, M. Polypod II. http://www.parc.xerox.com/spl/ members/yim/Google Scholar
  24. Yoshida, E., Murata, S., Tomita, K., Kurokawa, H., and Kokaji, S. 1997. Distributed formation control of a modular mechanical system. In Proceedings of the 1997 International Conference on Intelligent Robots and Systems.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Daniela Rus
    • 1
  • Marsette Vona
    • 1
  1. 1.Department of Computer ScienceDartmouth CollegeHanoverUSA

Personalised recommendations