An Atlas of Mouse Mammary Gland Development

  • Monica M. Richert
  • Kathryn L. Schwertfeger
  • John W. Ryder
  • Steven M. Anderson


The mouse mammary gland is a complex tissue, which is continually undergoing changes in structure and function. Embryonically, the gland begins with invasion of the underlying fat pad by a rudimentary ductal structure. Postnatal growth occurs in two phases: ductal growth and early alveolar development during estrous cycles, and cycles of proliferation, differentiation, and death that occur with each pregnancy, lactation, and involution. The variety of epithelial structures and stromal changes throughout the life of a mammary gland makes it a challenge to study. The purpose of this histological review is to give a brief representation of the morphological changes that occur throughout the cycle of mouse mammary gland development so that developmental changes observed in mouse models of mammary development can be appreciated.

mammary gland mouse duct alveoli atlas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 61:1439–1449.Google Scholar
  2. 2.
    T. Sakakura (1987). Mammary embryogenesis. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 37–65.Google Scholar
  3. 3.
    C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), TheMammary Gland: Development, Regulation, and Function; Plenum Press, New York, pp. 3–36.Google Scholar
  4. 4.
    I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long term rodent studies, Environ. Health Perspect. 104:938–967.Google Scholar
  5. 5.
    F. F. Bolander (1990). Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp. Cell Res. 189:142–144.Google Scholar
  6. 6.
    R. C. Humphries, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajweski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.Google Scholar
  7. 7.
    G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev. Biol. 152:354–362.Google Scholar
  8. 8.
    G. B. Silberstein, K. VanHorn, G. Shyamala, and C. W. Daniel (1994). Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.Google Scholar
  9. 9.
    N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.Google Scholar
  10. 10.
    C. J. Wilde, C. H. Knight, and D. J. Flint (1999). Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4:129–136.Google Scholar
  11. 11.
    R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115: 49–58.Google Scholar
  12. 12.
    M. Li, X. Liu, G. W. Robinson, U. Bar-Peled, K. U. Wagner, W. S. Young, L. Hennighausen, and P. A. Furth (1997). Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. USA 94:3425–3430.Google Scholar
  13. 13.
    Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.Google Scholar
  14. 14.
    I. H. Russo, J. Medado, and J. Russo (1989). Endocrine influences on the mammary gland. In T. Jones, U. Mohr, and R. Hunts (eds.), Integument and Mammary Glands, Springer-Verlag, New York, pp. 252–266.Google Scholar
  15. 15.
    H. L. Asch and B. B. Asch (1985). Expression of keratins and other cytoskeletal proteins in the mouse mammary epithelium during the normal developmental cycle and primary culture. Dev. Biol. 107:470–482.Google Scholar
  16. 16.
    G. L. Radice, M. C. Ferreira-Cornwell, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, and R. O. Hynes (1997). Precocious mammary gland development in p-cadherindeficient mice. J. Cell Biol. 139:1025–1032.Google Scholar
  17. 17.
    J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97:274–290.Google Scholar
  18. 18.
    K. C. Richardson (1949). Contractile tissues in the mammary gland, with special reference to myoepithelium in the goat. Proc. R. Soc. Lond. 136:30–45.Google Scholar
  19. 19.
    R. Dulbecco, W. R. Allen, M. Bologna, and M. Bowman (1986). Marker evolution during the development of the rat mammary gland: Stem cells identified by markers and the role of myoepithelial cells. Cancer Res. 46:2449–2456.Google Scholar
  20. 20.
    M. Barcellos-Hoff, J. Aggeler, and M. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235.Google Scholar
  21. 21.
    J. Adams and F. Watt (1993). Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.Google Scholar
  22. 22.
    S. Dickson and M. Warburton (1992). Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. J. Histochem. Cytochem. 40:697–703.Google Scholar
  23. 23.
    C. Streuli and M. Bissell (1990). Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110:1405–1415.Google Scholar
  24. 24.
    R. S. Talhouk, M. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282.Google Scholar
  25. 25.
    O. Lefebvre, C. Wolf, J. Limacher, P. Hutin, and C. Wendling (1992). The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J. Biol. Chem. 119:997–1002.Google Scholar
  26. 26.
    M. C. Neville, D. Medina, J. Monks, and R. C. Hovey (1998). The mammary fat pad. J. Mammary Gland Biol. Neoplasia 3:109–116.Google Scholar
  27. 27.
    M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and J. Otsuka (1992). Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J. Veterin. Med. Sci. 54:1117–1124.Google Scholar
  28. 28.
    K. K. Sekhri, D. R. Pitelka, and K. B. DeOme (1967). Studies of mouse mammary glands: Cytomorphology of the normal mammary gland. J. Natl. Cancer Inst. 39:459–490.Google Scholar
  29. 29.
    J. Russo, B. Gusterson, A. Rogers, I. H. Russo, and S. Wellings (1990). Biology of disease: Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:244–278.Google Scholar
  30. 30.
    J. R. Gordon and M. R. Bernfield (1980). The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev. Biol. 74:118–135.Google Scholar
  31. 31.
    G. B. Silberstein and C. W. Daniel (1982). Glycosaminoclycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215–222.Google Scholar
  32. 32.
    A. C. Andres and R. Strange (1999). Apoptosis in the estrous and menstrual cycles. J. Mammary Gland Biol. Neoplasia 4:221–228.Google Scholar
  33. 33.
    G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo seMouse cretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.Google Scholar
  34. 34.
    J. Ferguson, A. Schor, A. Howell, and M. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tiss. Res. 268:167–177.Google Scholar
  35. 35.
    R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Nat. Acad. Sci. USA 79:7346–7350.Google Scholar
  36. 36.
    S. Nandi (1958). Endocrine control of mammary gland development and function in the C3H/He mouse. J. Natl. Cancer Inst. 21:1039–1063.Google Scholar
  37. 37.
    D. A. Nguyen and M. C. Neville (1998). Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 3:233–246.Google Scholar
  38. 38.
    I. H. Mather and T. W. Keenan (1998). The cell biology of milk secretion: Historical notes. J. Mammary Gland Biol. Neoplasia 3:227–232.Google Scholar
  39. 39.
    E. Lee, W. Lee, C. Kaetael, G. Parry, and M. Bissell (1985). Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423.Google Scholar
  40. 40.
    A. R. Howlett and M. Bissell (1993). Influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 2:79–89.Google Scholar
  41. 41.
    J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:533–547.Google Scholar
  42. 42.
    I. H. Mather and T. W. Keenan (1998). Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3:259–273.Google Scholar
  43. 43.
    M. C. Neville (1999). Physiology of lactation. Clin. Perinatol. 26:251–279.Google Scholar
  44. 44.
    D. R. Pitelka (1980). General morphology and histology of the adult gland. In The Mammary Gland, pp. 944–965.Google Scholar
  45. 45.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J. Cell. Physiol. 168:559–569.Google Scholar
  46. 46.
    P. A. Furth (1999). Mammary gland involution and apoptosis of mammary epithelial cells. J. Mammary Gland Biol. Neoplasia 4:123–127.Google Scholar
  47. 47.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tiss. Res. 281:413–419.Google Scholar
  48. 48.
    K. H. Hollmann (1974). Cytology and fine structure of the mammary gland. In B. L. Larson, (ed.), Lactation: A Comprehensive Treatise, Acedemic Press, New York, pp. 3–95.Google Scholar
  49. 49.
    R. C. Richards and G. K. Benson (1971). Involvement of the macrophage system in the involution of the mammary gland in the albino rat. J. Endocrinol. 51:149–156.Google Scholar
  50. 50.
    V. A. Fadok (1999). Clearance: The last and often forgotten stage of apoptosis. J. Mammary Gland Biol. Neoplasia 4:203–211.Google Scholar
  51. 51.
    A. Marti, H. Lazar, P. Ritter, and R. Jaggi (1999). Transcription factor activities and gene expression during mouse mammary gland involution. J. Mammary Gland Biol. Neoplasia 4:145–152.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Monica M. Richert
    • 1
  • Kathryn L. Schwertfeger
    • 2
  • John W. Ryder
    • 3
  • Steven M. Anderson
    • 3
    • 2
  1. 1.Department of PathologyUniversity of Colorado Health Sciences CenterDenver
  2. 2.Program in Molecular BiologyUniversity of Colorado Health Sciences CenterDenver
  3. 3.Department of PathologyUniversity of Colorado Health Sciences CenterDenver

Personalised recommendations