Advertisement

Pharmaceutical Research

, Volume 17, Issue 10, pp 1159–1167 | Cite as

Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles

  • Marco van de Weert
  • Wim E. Hennink
  • Wim Jiskoot
Article

Abstract

In this review the current knowledge of protein degradation during preparation, storage and release from poly(lactic-co-glycolic acid) (PLGA) microparticles is described, as well as stabilization approaches. Although we have focussed on PLGA microparticles, the degradation processes and mechanisms described here are valid for many other polymeric release systems. Optimized process conditions as well as stabilizing excipients need to be used to counteract several stress factors that compromise the integrity of protein structure during preparation, storage, and release. The use of various stabilization approaches has rendered some success in increasing protein stability, but, still, full preservation of the native protein structure remains a major challenge in the formulation of protein-loaded PLGA microparticles.

controlled release microparticles PLGA protein stability stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Crotts and T. G. Park. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J. Microencapsul. 15:699–713 (1998).Google Scholar
  2. 2.
    W. R. Gombotz and D. K. Pettit. Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem. 6:332–351 (1995).Google Scholar
  3. 3.
    K. L. Smith, M. E. Schimpf, and K. E. Thompson. Bioerodible polymers for delivery of macromolecules. Adv. Drug Del. Rev. 4:343–357 (1990).Google Scholar
  4. 4.
    J. L. Cleland and A. J. S. Jones. Stable formulations of recombinant human growth hormone and interferon-γ for microencapsulation in biodegradable microspheres. Pharm. Res. 13:1464–1475 (1996).Google Scholar
  5. 5.
    J. L. Cleland, E. Duenas, A. Daugherty, M. Marian, J. Yang, M. Wilson, A. C. Celniker, A. Shahzamani, V. Quarmby, H. Chu, V. Mukku, A. Mac, M. Roussakis, N. Gillette, B. Boyd, D. Yeung, D. Brooks, Y.-F. Maa, C. Hsu, and A. J. S. Jones. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J. Control. Release 49: 193–205 (1997).Google Scholar
  6. 6.
    J. L. Cleland. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol. Prog. 14:102–107 (1998).Google Scholar
  7. 7.
    O. L. Johnson, W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14:730–735 (1997).Google Scholar
  8. 8.
    H. K. Kim and T. G. Park. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation, stability and incomplete release mechanism. Biotechnol. Bioeng. 65:659–667 (1999).Google Scholar
  9. 9.
    M. A. Tracy. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog. 14:108–115 (1998).Google Scholar
  10. 10.
    T.-H. Yang, A. Dong, J. Meyer, O. L. Johnson, J. L. Cleland, and J. F. Carpenter. Use of infrared spectroscopy to assess secondary structure of human growth hormone within biodegradable microspheres. J. Pharm. Sci. 88:161–165 (1999).Google Scholar
  11. 11.
    L. Chen, R. N. Apte, and S. Cohen. Characterization of PLGA microspheres for the controlled delivery of IL1α for tumor immunotherapy. J. Control. Release 43:261–272 (1997).Google Scholar
  12. 12.
    D. K. Pettit, J. R. Lawter, W. J. Huang, S. C. Pankey, N. S. Nightlinger, D. H. Lynch, J. A. C. L. Schuh, P. J. Morrissey, and W. R. Gombotz. Characterization of poly(glycolide-co-D,L-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res. 14:1422–1430 (1997).Google Scholar
  13. 13.
    J. Yang and J. L. Cleland. Factors affecting the in vitro release of recombinant human interferon-γ (rhIFN-γ) from PLGA microspheres. J. Pharm. Sci. 86:908–914 (1997).Google Scholar
  14. 14.
    M. J. Alonso, R. K. Gupta, C. Min, G. R. Siber, and R. Langer. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 12:299–306 (1994).Google Scholar
  15. 15.
    D. K.-L. Xing, D. T. Crane, B. Bolgiano, M. J. Corbel, C. Jones, and D. Sesardic. Physicochemical and immunological studies on the stability of free and microsphere-encapsulated tetanus toxoid in vitro. Vaccine 14:1205–1213 (1996).Google Scholar
  16. 16.
    P. Johansen, H. P. Merkle, and B. Gander. Physico-chemical and antigenic properties of tetanus and diphtheria toxoids and steps towards improved stability. Biochim. Biophys. Acta 1425:425–436 (1998).Google Scholar
  17. 17.
    P. Johansen, Y. Men, R. Audran, G. Corradin, H. P. Merkle, and B. Gander. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm. Res. 15:1103–1110 (1998).Google Scholar
  18. 18.
    P. Johansen, H. Tamber, H. P. Merkle, and B. Gander. Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alkylated PLA/PLGAs. Eur. J. Pharm. Biopharm. 47: 193–201 (1999).Google Scholar
  19. 19.
    A. Sanchéz, B. Villamayor, Y. Guo, J. McIver, and M. J. Alonso. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185:255–266 (1999).Google Scholar
  20. 20.
    J. L. Cleland, A. Lim, L. Barrón, E. T. Duenas, and M. F. Powell. Development of a single-shot subunit vaccine for HIV-1: Part 4. Optimizing microencapsulation and pulsatile release of MN rgp120 from biodegradable microspheres. J. Control. Release 47: 135–150 (1997).Google Scholar
  21. 21.
    T. Uchida, K. Shiosaki, Y. Nakada, K. Fukada, Y. Eda, S. Tokiyoshi, N. Nagareya, and K. Matsuyama. Microencapsulation of hepatitis B core antigen for vaccine preparation. Pharm. Res. 15:1708–1713 (1998).Google Scholar
  22. 22.
    J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307–377 (1993).Google Scholar
  23. 23.
    H. Sah. Protein behavior at the water/methylene chloride interface. J. Pharm. Sci. 88:1320–1325 (1999).Google Scholar
  24. 24.
    H. Sah. Protein instability toward organic solvent/water emulsification: Implications for protein microencapsulation into microspheres. PDA J. Pharm. Sci. Technol. 53:3–10 (1999).Google Scholar
  25. 25.
    M. F. Zambaux, F. Bonneaux, R. Gref, E. Dellacherie, and C. Vigneron. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release 60:179–188 (1999).Google Scholar
  26. 26.
    M. Morlock, H. Koll, G. Winter, and T. Kissel. Microencapsulation of rh-erythropoietin using biodegradable poly(D,L-lactide-co-glycolide): Protein stability and the effects of stabilizing excipients. Eur. J. Pharm. Biopharm. 43:29–36 (1997).Google Scholar
  27. 27.
    M. Iwata, T. Tanaka, Y. Nakamura, and J. W. McGinity. Selection of the solvent system for the preparation of poly(D,L-lactic-co-glycolic acid) microspheres containing tumor necrosis factoralpha (TNF-α). Int. J. Pharm. 160:145–156 (1998).Google Scholar
  28. 28.
    W. Lu and T. G. Park. Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems. PDA J. Pharm. Sci. Tech. 49:13–19 (1995).Google Scholar
  29. 29.
    K. S. Suslick, D. A. Hammerton, and R. E. Cline, Jr. The sonochemical hot spot. J. Am. Chem. Soc. 108:5641–5642 (1986).Google Scholar
  30. 30.
    P. Reisz and T. Kondo. Free radical formation induced by ultrasound and its biological implications. Free Rad. Biol. Med. 13: 247–270 (1992).Google Scholar
  31. 31.
    H. Sah. Stabilization of proteins against methylene chloride / water interface-induced denaturation and aggregation. J. Control. Release 58:143–151 (1999).Google Scholar
  32. 32.
    S. M. Butler, M. A. Tracy, and R. D. Tildon. Adsorption of serum albumin to thin films of poly(lactide-co-glycolide). J. Control. Release 58:335–347 (1999).Google Scholar
  33. 33.
    M. M. Gaspar, D. Blanco, M. E. M. Cruz, and M. J. Alonso. Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: Influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release 52:53–62 (1998).Google Scholar
  34. 34.
    T. Tsai, R. C. Mehta, and P. P. DeLuca. Adsorption of peptides to poly(D,L-lactide-co-glycolide): 1. Effect of physical factors on the adsorption. Int. J. Pharm. 127:31–42 (1996).Google Scholar
  35. 35.
    T. Tsai, R. C. Mehta, and P. P. DeLuca. Adsorption of peptides to poly(D,L-lactide-co-glycolide): 2. Effect of solution properties on the adsorption. Int. J. Pharm. 127:43–52 (1996).Google Scholar
  36. 36.
    G. Crotts and T. G. Park. Stability and release of bovine serum albumin encapsulated within poly(D,L-lactide-co-glycolide) microparticles. J. Control. Release 44:123–134 (1997).Google Scholar
  37. 37.
    K. G. Carrasquillo, R. A. Cordero, S. Ho, J. M. Franquiz, and K. Griebenow. Structure-guided encapsulation of bovine serum albumin in poly(DL-lactic-co-glycolic) acid. Pharm. Pharmacol. Commun. 4:563–571 (1998).Google Scholar
  38. 38.
    K. Griebenow and A. M. Klibanov. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118:11695–11700 (1996).Google Scholar
  39. 39.
    K. Griebenow and A. M. Klibanov. Can conformational changes be responsible for solvent and excipient effects on the catalytic behavior of subtilisin Carlsberg in organic solvents? Biotechnol. Bioeng. 53:351–362 (1997).Google Scholar
  40. 40.
    T. Knubovets, J. J. Osterhout, and A. M. Klibanov. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol. Bioeng. 63:242–248 (1999).Google Scholar
  41. 41.
    T. G. Park, H. Y. Lee, and Y. S. Nam. A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J. Control. Release 55:181–191 (1998).Google Scholar
  42. 42.
    J.-M. Péan, M.-C. Venier-Julienne, F. Boury, P. Menei, B. Denizot, and J.-P. Benoit. NGF release from poly(D,L-lactide-coglycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J. Control. Release 56:175–187 (1998).Google Scholar
  43. 43.
    J.-M. Péan, F. Boury, M.-C. Venier-Julienne, P. Menei, J.-E. Proust, and J.-P. Benoit. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres. Pharm. Res. 16:1294–1299 (1999).Google Scholar
  44. 44.
    O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med. 2:795–799 (1996).Google Scholar
  45. 45.
    B. Bittner, M. Morlock, and H. Koll. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: Influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur. J. Pharm. Biopharm. 45:295–305 (1998).Google Scholar
  46. 46.
    B. Bittner and T. Kissel. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J. Microencapsul. 16:325–341 (1999).Google Scholar
  47. 47.
    R. Falk, T. W. Randolph, J. D. Meyer, R. M. Kelly, and M. C. Manning. Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J. Control. Release 44:77–85 (1997).Google Scholar
  48. 48.
    T. J. Young, K. P. Johnston, K. Mishima, and H. Tanaka. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J. Pharm. Sci. 88:640–650 (1999).Google Scholar
  49. 49.
    J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: Some practical advice. Pharm. Res. 14:969–975 (1997).Google Scholar
  50. 50.
    M. Morlock, T. Kissel, Y. X. Li, H. Koll, and G. Winter. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: Protein stabilization and in-vitro release properties. J. Control. Release 56:105–115 (1998).Google Scholar
  51. 51.
    K. G. Carrasquillo, H. R. Costantino, R. A. Cordero, C. C. Hsu, and K. Griebenow. On the structural preservation of recombinant human growth hormone in a dried film of a synthetic biodegradable polymer. J. Pharm. Sci. 88:166–173 (1999).Google Scholar
  52. 52.
    K. Fu, K. Griebenow, L. Hsieh, A. M. Klibanov, and R. Langer. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J. Control. Release 58: 357–366 (1999).Google Scholar
  53. 53.
    M. van de Weert, R. van 't Hof, J. van der Weerd, R. M. A. Heeren, G. Posthuma, W. E. Hennink, and D. J. A. Crommelin. Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR-techniques. J. Control. Release 68:31–40 (2000).Google Scholar
  54. 54.
    S. Sharif and D. T. O'Hagan. A comparison of alternative methods for the determination of the levels of proteins entrapped in poly(lactide-co-glycolide) microparticles. Int. J. Pharm. 115:259–263 (1995).Google Scholar
  55. 55.
    H. Sah. A new strategy to determine the actual protein content of poly(lactide-co-glycolide) microspheres. J. Pharm. Sci. 86:1315–1318 (1997).Google Scholar
  56. 56.
    M. D. Blanco and M. J. Alonso. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 43:287–294 (1997).Google Scholar
  57. 57.
    H. Takahata, E. C. Lavelle, A. G. A. Coombes, and S. S. Davis. The distribution of protein associated with poly(DL-lactide-co-glycolide) microparticles and its degradation in simulated body fluids. J. Control. Release 50:237–246 (1998).Google Scholar
  58. 58.
    H. R. Costantino, R. Langer, and A. M. Klibanov. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J. Pharm. Sci. 83:1662–1669 (1994).Google Scholar
  59. 59.
    M. C. Lai and E. M. Topp. Solid-state chemical stability of proteins and peptides. J. Pharm. Sci. 88:489–500 (1999).Google Scholar
  60. 60.
    A. J. Domb, L. Turovsky, and R. Nudelman. Chemical interactions between drugs containing reactive amines with hydrolyzable insoluble biopolymers in aqueous solutions. Pharm. Res. 11: 865–868 (1994).Google Scholar
  61. 61.
    S. P. Schwendeman, H. R. Costantino, R. K. Gupta, M. Tobío, A. C. Chang, N. J. Alonso, G. R. Siber, and R. Langer. Strategies for stabilising tetanus toxoid towards the development of a singledose tetanus vaccine. Dev. Biol. Stand. 87:293–306 (1996).Google Scholar
  62. 62.
    P. G. Shao and L. C. Bailey. Porcine insulin biodegradable polyester microspheres: Stability and in vitro release characteristics. Pharm. Dev. Technol. 5:1–9 (2000).Google Scholar
  63. 63.
    M. Igartua, R. M. Hernández, A. Esquisabel, A. R. Gascón, M. B. Calvo, and J. L. Pedraz. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J. Microencapsul. 14:349–356 (1997).Google Scholar
  64. 64.
    N. Badri Viswanathan, P. A. Thomas, J. K. Pandit, M. G. Kulkarni, and R. A. Mashelkar. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. J. Control. Release 58:9–20 (1999).Google Scholar
  65. 65.
    W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129–188 (1999).Google Scholar
  66. 66.
    T. G. Park, W. Lu, and G. Crotts. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic acid-co-glycolic acid) microspheres. J. Control. Release 33:211–222 (1995).Google Scholar
  67. 67.
    H. K. Sah, R. Toddywala, and Y. W. Chien. The influence of biodegradable microcapsule formulations on the controlled release of a protein. J. Control. Release 30:201–211 (1994).Google Scholar
  68. 68.
    M. Igartua, R. M. Hernández, A. Esquisabel, A. R. Gascón, M. B. Calvo, and J. L. Pedraz. Stability of BSA encapsulated into PLGA microspheres using PAGE and capillary electrophoresis. Int. J. Pharm. 169:45–54 (1998).Google Scholar
  69. 69.
    K. Fu, D. W. Pack, A. Laverdiere, S. Son, and R. Langer. Visualization of pH in degrading polymer microspheres. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 25:150–151 (1998).Google Scholar
  70. 70.
    A. Brunner, K. Mäder, and A. Gopferich. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853 (1999).Google Scholar
  71. 71.
    P. G. Shao and L. C. Bailey. Stabilization of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Dev. Technol. 4:633–642 (1999).Google Scholar
  72. 72.
    A. Shenderova, T. G. Burke, and S. P. Schwendeman. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 16:241–248 (1999).Google Scholar
  73. 73.
    K. Mäder, B. Bittner, Y. Li, W. Wohlauf, and T. Kissel. Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks. Pharm. Res. 15:787–793 (1998).Google Scholar
  74. 74.
    J. L. Cleland, A. Mac, B. Boyd, J. Yang, C. Hsu, H. Chu, V. Mukku, and A. J. S. Jones. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 14:420–425 (1997).Google Scholar
  75. 75.
    N. Nihant, C. Schugens, C. Grandfils, R. Jerome, and P. Theyssie. Polylactide microparticles prepared by double emulsionevaporation II. Effect of the poly(lactide-co-glycolide) composition on the stability of the primary and secondary emulsions. J. Colloid Interface Sci. 173:55–65 (1995).Google Scholar
  76. 76.
    M. S. Hora, R. K. Rana, J. H. Nunberg, T. R. Tice, R. M. Gilley, and M. E. Hudson. Release fo human serum albumin from poly-(lactide-co-glycolide) microspheres. Pharm. Res. 7:1190–1194 (1990).Google Scholar
  77. 77.
    G. Gander, E. Wehrli, R. Alder, and H. Merkle. Quality improvement of spray-dried protein-loaded D, L-PLA microspheres by appropriate polymer solvent selection. J. Microencapsul. 12: 83–97 (1995).Google Scholar
  78. 78.
    H. K. Lee, J. H. Park, and K. C. Kwon. Double-walled microparticles for single shot vaccine. J. Control. Release 44:283–293 (1997).Google Scholar
  79. 79.
    N. Wang and X. S. Wu. A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. Int. J. Pharm. 166:1–14 (1998).Google Scholar
  80. 80.
    S. P. Schwendeman, M. Tobío, M. Joworowicz, M. J. Alonso, and R. Langer. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsul. 15:299–318 (1998).Google Scholar
  81. 81.
    M. Tobío, S. P. Schwendeman, Y. Guo, J. McIver, R. Langer, and M. J. Alonso. Improved immunogenicity of a core-coated tetanus toxoid delivery system. Vaccine 18:618–622 (2000).Google Scholar
  82. 82.
    G. Zhu, S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotechnol. 18:52–57 (2000).Google Scholar
  83. 83.
    G. Zhu and S. P. Schwendeman. Influence of basic salts on stability and release of proteins in injectable poly(lactide-co-glycolide) delivery devices. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 26:#6446 (1999).Google Scholar
  84. 84.
    G. Zhu and S. P. Schwendeman. Stabilization of bovine serum albumin encapsulated in injectable poly(lactide-co-glycolide) millicylinders. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 25: 267–268 (1998).Google Scholar
  85. 85.
    C. M. Agrawal and K. A. Athanasiou. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J. Biomed. Mater. Res. 38:105–114 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Marco van de Weert
    • 1
  • Wim E. Hennink
    • 1
  • Wim Jiskoot
    • 1
    • 2
  1. 1.Department of Pharmaceutics, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Pharmaceutics, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations